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Introduction

frhere are two categories of magnetic anomalies associated with the oiean. Primary

anomalies are induced directly by interaction of ocean flow with the. gceornagnetic field, orI induced by ionospheric fluctuations,, or am tho expression of the remmrant magnetization of the

ocean floor rocks. Secondary anomalies are created by interaction of electric current flow in the

ocean, with Irregularities of t've electrical conductivity distribution withir, the ocean, or with

irregularities of the boundArks of the ocean (seafloor ridges and troughs or ocean surface

wave). Our focus in this report is on secondary anomalies, although some attention is paid to

primary effects for completeness,s.*.

Large scale and relatively Intense electric currents in the ocean are mainly induced by

ionospheric fluctuations. The primary magnetic fields and induced electric fields in the ocean

both have "redr continuum spectra in the frequency range from one cycle per day upward,

which is caused by the normal unrest of the ionosphere and by bay disturbances and the princi.

pal part of magnetic storms. In addition, there Is a line spectrum consisting of harmonics of I

cpd: the solar daily variation. Typical amplitudes of electric fields Induced in the ocean are of

order I L Vl/m, although larger values can be found in a magnetic storm.

The spatial scale of the anomalous conductivity structures within the ocean which we

shall treat are relatively small; for ocean surface waves the wavelength is typically a few. hun.

dred meters, and a comparable scale is appropriate for ocean structures such as internal waves

and frontal systems. Ocean bottom hills, ridges, and troughs are typically of a few to a few tens

of kilometers in size. As a consequence of the slow variation of the primary electric field in the

jcean and the small spatial scale of the conductivity anomalies, the magnetic Reynold's

number, R-/.-w;Lo.D, applicable to the anomalous secondary fields, Is small. For example, if

w,, the oscillation frequency, Is lO-4Sec 1 , the conductivity of seawater cr is 3 S/m, and the

horizontal and vertical scales L and D are 40 km and 4 km respectively, then R-0.06. From

this rough calculation it is apparent that time variations of the primary fields do not lead to

appreciable self-inductance effects in the secondary fields. 'An the subsequent calculations we

have neglected the self-inductance of secondary fields entirely, thus treating them as though

they were caused by a perfectly static primary field. This approximation, valid for these secon-

dary fields, is, of course, entirely inappropriate for the treatment of the primary fields, because

thcir large horizontal scale ordinarily leads to magnetic Reynold's numbers of order unity or

greater,

' ,,ii



Chapter I

Magnetic Anomalies Induced by Surface Waves

1. Introduction

Here we consider magnetic anomalies associated with waves of small amplitude mov-

in on the surface of a deep ocean. There are two principal effects in this category; that due to

interaction of the surface waves with a uniform electrical current flow within the ocean (such as

might be induced by electrical activity In the ionosphere), and that due to wave-associated sea-

water movement through thot Earth's magnetic field. Section 2 of this chapter deals with the
magnetic field generated by the uniform current flow alone, and section 3 derives the perturb-

Ing magnetic effects of the interaction of a surface wave with this flow. Section 4 is a note In

passing that the mathematics in sections 2 and 3 is also applicable to the calculation of magnetic

anomalies produced by a special class of bottom features. Section 5 discusses the Interaction of

the water motions that accompany surface waves with the Earth's magnetic field, summarizing

previous work by others. Section 6 covers the subject of the gradients of the magnetic field

vector components generated by the mechanisms explored in sections 2, 3, and 5. Finally, sec-

dton 7 puts some numbers into the field expressions derived in sections 2, 3, and 5 in order to

give some idea of the relative magnitudes of the different magnetic effects under various cir-

cumstances. The treatment is as general as is consistent with the- small amplitude wave, deep

uriform ocean model, and should lend itself to expansion to consider the effects of ocean bot-

torn features of small aspect, should this be desired.
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SH 2. Uniform horizontal electric field In a flat-surfaced ocean

One of the consequences of magnetic field fluctuations within the volume of the

ocean, such as may result from the solar daily variation of the Earth's magnetic field or from

disturbances in the upper atmosphere, is the generation of an electric potential gradient within

the ocean and the corresponding induction. of an electrical current flow; for example, the solar
daily variation typically generates a slowly oscillating electric field throughout the deep sea with

an amplitude that is typically a large fraction of a microvolt per meter, and magnetic storms In

the upper atmosphere can give rise to electric fields several times larger. Magnetic fluctuations

of this sort are for the most part of a sufficiently 'Ijw frequency that the magnetic induction
number ,•1o2/ (where w is the frequency of fluctuation, 1t and a. are the magnetic permeability

and electrical conductivity respectively of the material under consideration, in this case seawa-

ter, and I is the length scale of the induction effect in question, in this case the depth of the

ocean) is a great deal less than unity, indicating that the magnetic fluctuations penetrate

through the ocean virtually without resistance; as a result of this, in a flat-bottomed ocean the
induced electric field will be essentially uniform with depth. Also, and, in this context, perhaps

more to the point, the time scale of these magnetic field fluctuations is typically sufficiently

large (with periods on the order of an hour and up) compared to that of water wave effects on
the ocean surface that the electric fields induced by them can, for our present purposes, be con-

sidered static to excellent approximation. Accordingly, we assume a horizontal, spatially uni-
form, temporally static electric field got within the volume of the ocean, and an induced electr-

ical current density distribution J such that

1- (Cz)Eo. , (2.1)

where a.(Z) is the electrical conductivity distribution of the ocean, assumed here to be a func-

tion of depth only. In the following work dealing with the magnetic effects resulting from this
induced electrical current distribution, deviation of the current density from J as given by (2.1)
will be considered as due to the perturbing effects of variations of the upper and/or lower boun-

daries of the ocean, and for a flat-surfaced, flat-bottomed ocean should be completely absent.

We consider first the magnetic field within and above a fiat-surfaced, flat-bottomed

ocean of depth D resulting from the induced electrical current density distribution I as given

by (2.1). If this current distribution is viewed as the limit of a large number of parallel fine
threads of electrical current, then one sees that the resultant magnetic field can have no com-

ponent in the Sc direction, and consideration of the symmetry of the problem in the .P direction

shows that the field can have no 1 component, where i points vertically upward. This field can

be deduced by use of the integral form of Ampere's law,
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f d - 1,o fs Th d(2.2)

together with some symmetry arguments, and the total magnetic field may thnn be inferred by

adding this component to the inducing field, which can be derived by other means.

We start with a rectangular path of integration within a plane perpendicular to k, its

top and bottom legs parallel to .P and above the surface and below the bottom respectively.

From the above arguments we have that the induced magnetic induction vector A is every-
where parallel to P, and from considerations of symmetry we have that the fields above the
ocean surface and beneath the bottom should have the same magnitude but opposite directions.

Since the vertical legs of the rectangle contribute nothing to the integral, we therefore have for
the magnetic induction everywhere beneath the ocean floor

--- ,o a(z) a• ,(2.3)

with the induced magnetic induction everywhere above the ocean surface being just the nega-
tive of this. We now place the lower leg of the rectangle exactly at the ocean floor, and move

the upper leg down below the surface to a depth a distance z2 above the bottom; given (2.3) for

the magnetic Induction along the lower leg, we have from (2.2) the magnetic induction along
the upper leg

2z)~AA. 12 .(z)dz-f~cr(z)dz 124

If the electrical conductivity of the seawater is constant over the depth of the ocean with a

value a0, then this reduces to

Az) --- oI , z > D (2.5)

f,(z) - +'A Ao Jo (D-2zo) 0 < z < D (2.6)

S(z)-+IAo JOD z< 0 (2.7)

where

JO - o'o (2.8)

and z-0 is at the ocean floor. Use of the differential form of Ampere's law

S(2.9)

I.*ý ý6
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(neglecting displacement currents, a valid approximation in this context) confirms this work,

For the total magnetic induction A; at the ocean floor we have

- , (2.10)

where ZZ is the E mode impedance of the Earth, a co,'.'.-x functiun of frequency that is

dependent in ideal circumstances only on the distribution of' electrical conductivity below the

ocean floor (see for example Cox et al., 1970); Z4 is,technically, the rado at the Earth's surface

between the horizontal component of an oscillating electric field and the horizontal transverse

component of the magnetic field that appears in response to it, and on grounds of symmetry we

have in this case that this total magnetic induction Or must be perpendicular to the induced

electric field Eek (as is usually the case in general), yielding the field direction indicated by

(2.11) (arguments of scaling and symmetry suggest that if Or has a vertical component then it

must be much smaller in magnitude than the horizontal component). At a frequency of one

cycle per hour, In a typical measurement ZE might have a magnitude of 0.00025 f0 and a phase

* of about 45". A; is the sum of it and Br, the slowly fluctuating magnetic induction field that

originally induced A, and by the previous argument relating to the magnetic induction number

we have that N; must be essentially uniform in space throughout the ocean and for some dis-
tance above the ocean surface, accordingly, we get A; over this altitude range simply by adding

to F, whatever Is necessary to bring itb value at the ocean floor up to that given by (2.10).

Thus, A. comes to

A~.,oaJ{-~c(Y)W I , (2.11)

and the expression for Or is

S00) - Eo£0 "-'--Zo) ,(2,12)

where

-T(zo)-Jo.(z)ak , 04zo4D (2.13)
0

and

"V(zo)-Z(D) zo>D (2.14)

For an ocean 4 kilometers deep, for an inducing field oscillating at one cycle pet- hour, I(D) is

- X l
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3. The perturbing effect of shallow waves at the surface

We now suppose the surface to be described by the expression

a expQFH.X) e-"t , (3.1)

where C is the height of the surface above: its mean level, a is the wave amplitude, kH is the

horizontal component of the wavevector, which for convenience we will express in the form

-- k (cwo, sinG, O) , (3.2)

where k is real and positive, 9 is the position vector, ru-(',y;), and w is the angular fre-

quency of the wave. In practical applications the surface is considered to be given by either the

real or imaginary part of expression (3.1), whichever is more convenient, and the resultant

from (3.1).

In order to meet the boundary condition that 7 at the surface should have no corn-

ponent normal to the surface, It Is necessary to add a perturbation term to the unifr'~m current

distribution initially assumed to exist beneath the surface. Furthermore, since thy.. current dis.

tribution within the ocean is ultimately induced by whatever electric field is prestit,

(3.3)

where is the electric field and 4. is the electrical conductivity of seawater (which may be con-
sidered for our, purposes to be a constant, as the depth range within which the surface waves

exert a noticeable electrical influence is too thin to ixhiait a significant conductivity variation),

may be viewed as the gradient of a scalar function;

7- V(3.4)

If we make the reasonable assumption that separation of electrical charge within the body of the

ocean is negligible for all w of interest, we also have

v.17- , (3.5)

which with (3.4) implies

V240-0 (3.6)

The only solutions to (3.6) that can conveniently be reconciled with (3.1) have the

form
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A - c (4 rl-T+) + B ev W3-7*~') Clout, (3.7)

where

0 - k (cos9, sine, -1) (3,8)

and

'2 - k (cosf, sing, 1) ;(3.9)

the first term of (3.7) dar,,ps exponentially downward, and the second term grows exponentially

downward. For an ocean of finite and uniform depth the coefticidnts A and B can be related by

use of the boundary condition at the ocean floor that the electrical current flow at this Interface

has no vertical component, but as long as the order of magnitude of the wavelength of the sur-

face wave is less than that of the depth of the ocean, which for our purposes will generally be

the c=e, the second term of (3.7) is negligible compared to the first; accordingly, to simplify

the calculations we will henceforth assume that B-0 and take - giving a current distribu-

tion beneath the surface of

7 ok , 0  + Wa , exp9or-.) e-" , (3.10)

k '-k(cosO, sing,,-i) . (3.11)

The value of A may be determined from the boundary condition at the surface that

V,7- 0 at z-C , (3.12)

where 7 is a vector normal to the surface; such a vector is

x' y'(3.13)

If (3.10) is substituted into (3.12) and terms of second and higher orders in (ka) are discarded,

one gets

A - laJocos9 (3.14)

under the condition that

IkalI << 1 (3.1.5)

This gives from (3,10)

-Jo I - a csO exp (X.X'i ") e' (3.16)

N,
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ki general, the magnetic field N (Zo) due to an electrical current distribution within a

volume V is given by
S•o Y) x •'-)

L -cg) , ±2 i---T- dv (3.17)

(Reitz and Milford, 1.%7, p.154); for this problem this integral takes the form

SX (Yo--9)
- -f do-- d '(3.18)

where 7(g) is as given by (3.16). It is convenient for purposes of calculation to express I as
thse S= of 1, and p,

CTo) - BS Oro) + AV 0Wo) ,(3.19)

where ly is the teli due to the part of the current distribution that is between z--D and z,-0

and Ns Is the field due to the pat of the current distribution between z-O and z-';, and to
bre~ak ly dowai into 1vu and Nvp

P I ±) - O (r0 + P, (Vo) (3.20)

where Ny is due to the uniform component of the current distribution, .Fl, and lvp is due to
the peaurbation thereon which constitutes remainder of the distribution, XvV has already been

determined in section 2.

NV1 is given by

Lp 4v) ~-~ d fdz (3.21)

x(oaO sing,-1) x V-70) .

"C -/ o /JO a k cosO e-' , (3.22)

where we have simplified the integration by extending the lower limit of integration from z--D

down to z--o-; provided that the wavelength of the surface wave is somewhat less than the

depth of the ocean, as has already been assumed, the error introduced by this extension should
bt negligible. Making the substitutions

u - (x-xo) cogo + (Y-yo) sino (3.23)

v - (V-YO) Cos# - (x-Xo) silio (3.24)



W (Z-ZO)(3.25)

Uo- x coso + yo sine (3.26)

"- T- cos9 + P sine (3.27)

S- co - t sing (3.28)

turns (3.21) Into

A C e"l'O e~o""rpto) 4w fdu dv dw (3.29)
-m - 1

(10 +1)v + O(w-Iu) e1AW ekw
X X (u2+v2+w2)

where z0 is the altitude of the observation point relative to the ocean surface. The term in

(i+0) does not contribute to the integral, as it gives an integrand antisymmetric in v. Further

reduction of the ititegral is aided by the identity

de 2 (3.30)

(Orobner, sec. 213, eq. 1,,'p. 34); use of this identity in the integration over v gives frum

(3.29)

&P Co) e"*e"' du fdw fu(3.31)

which yields easily to contour integration in u (over the upper half plane) followed by standard

integration in w, to give

..O,•'u•p•,1o) - 1h ./0 a cos ekU° e-IkA.0 e'ivt (3.32)

x (-sine, cosO, 0)

In the computation of Is the pertui btion part of the current distribution contributes

only in second order in (ka), and thus can be ignored, leaving only the uniform component of
the current distribution to be considered. The appropriate intr.gral expression is then

Ss .Jo f d x (4-T)
= j•).J f -. I iUiT (3.33)

.,

"a.'. ,.• ,.,.,'t ',•' ",,. '-. ... •', "% ,'',•x• = ,•" -', ' , '' ,, % % • ' '., ',, '" . " , ',-,•.• ,. . .•• ' , ',," '. ..••*',• . ..'.,• 2. ,,_..
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or

I .0o)- _ fd dy (3.34)

(0, (I-zo), - O'-Yo))

The small range of integration of z in this integral suggests a Taylor expansion of the integrand

over this variable; if this is done, only the first,.term (the constant term) contributes to Ns in

first order in ka. Doing this, we got

AS 00)- go 1 2fdvfo (3.35)

(0, zo, (Y-yo)}

Using the expression (3.1) for 4 and making the variable changes (3.23), (3.24), and (3.26)

gives from this

-Yr0) JA na0  e fdu dy (3.36)

(0, zo, u sing+ cos) O
(u2+iv+ze? )32

from which the integration over v gives

- - o Jo a e• ' cla d (0, zo, u sing) eft
S2_d (u+zo)(U-z) (3.37)

which yields to contour integration in u, closing the contour in the upper half plane, to give

IS (Yo) - - ,6o Jo a e "0 e- Ilao e-' '(zo) (3.38)

((O,l sino) -zo> 0
r(zo)" (0,-1, I sino) , zo < 0 .

Combining this with (3.31) gives for Uw, the field due to the perturbing effects of the

surface wave,

Ow1o) - - 'h Ao Jc a ek° e-IA°l e`1 V(,0) (3,40)



I 1si1o(CO, sire, , >O

VZO>

sir (co, siln, 1) - (0, 2, 0) , zo< 0 , (3,41)

to which the field computed in section 2 for a uniform current distribution within a flat-surfaced

ocean must be added to give the complete magnetic field to first order in (ka). As a. check,

(3.40) and (3.41) have been verified by use of the curl expression (2.5). Note, as a special

case, that when the wave crests are perpendicular to the St direction there is no wave-induced

contribution to the field above the surface. This is reasonable on physical grounds, as In this

case the total vertically integ,"ated horizontal electric current flow within the ocean is unchanged

from the fiat surface condition and unchanging with position everywhere in the ocean; there-

fore, by Amee's law, the difference AD between the magnitudes of the horizontal component

of the magnetic field above the ocean surface and beneath the ocean floor is unchanged from

the fiat ocean case, and considerations of symmetry rule out a vertical field component for this

geometry. By contrast, when the wave crests are parallel to .I there is more total electrical

current flow through the water beneath a crest than beneath an adjacent trough, and hence AB

is variable from place to place.

* i
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4. Applicatlen to fields induced by bottom topography

The work in the previous section can be applied, with minor modifications, to the cal-

culation of magnetic anomalies produced by certain types of bottom features. Any reasonably

smooth bottom feature can be described by a series of terms of the form of (3.1) with co set to

zero, and the problem is then reduced to that of the previous section turned upside-down. The

usefulness of this approach is limited in that the lateral dimension of the feature to be Investi-

gated must be somewhat greater than Its vertical dimension in order to meet the small-scale

approximation (3.15) used in developing the mathematics. This application is discussed in

detail In section 6 of chapter 2.

In the event tha .e lateral dimension of the feature is on the order of the depth of

the ocen both term.s of the general solution (3.7) for the electrical current potential, that

which increases exponentially.with depth and that which decreases exponentially with depth,

must be mued, and, the subsequent steps of the derivation altered to suit. Since the vertical

scale of the bottom feature will generally be much greater than the amplitudcs of whatever

waves them ame on the ocean surface, it is a reasonable simplifying. assumption In this develop.

ment to onmider the ocean surface to be completely flat.

I;

I
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5. Surface waves moving through the Earth's magnetic field

Surface waves will be accompanied by motion of the seawater beneath the surface, and

the movement of charge-carrying fluid through the Earth's magnetic field will result in an

induced electrical current distribution; this current distribution will in turn give rise to a mag-

netIc field modifying the Earth's field. This subject has been covered by Crews and Futterman

(1962), Warburton and Caminlti (1964), and Weaver (1965), but for the sake of completeness

an abbreviated derivation of the effect is given here in the mathematical framework developed

in sections 2 and 3 of this chapter.

The bcurrent distribution induced by the water movement is given by

7- v •?+ 7c,(5)

where o- is the electrical conductivity of the water, taken here to be constant, V is the water

velocity distribution, and ? is the Earth's magnetic field, which may be taken to be locally uni-

form. 7c is a correction term whose purpose is to insure that the boundary condition is met.that

Sthere be no electrical current flow through the surface. If we assume the water flow to be Irro-

tational (for a discusion of the validity of this assumption see Lamb, 1945, sec. 33, pp. 35.37),

then the condltion

V7-1 0 (5.2)

is automatically satisfied provided that the same condition holds for 7c;

a.7- W V.(Px P) + V.7 c (5.3)

Another consequence of the assumption of irrotational water flow is that the velocity field may

be viewed as the gradient of a scalar function, and if we also suppose that the seawater is

incompressible, which is safe enough, we have

VV7- 0 (5.4)

If 4, is the scalar function, then

"V- V- (5.5)

V•0-0 . (5.6)

The solution of (5.6) that most conveniently fits with the surface equation (3.1) has the form

211
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,tk) A cIP ( .T)"" , (5.7)

where • is as given in (3.11), and if we make the constraint that

.-£ - ~VS atztw. (5.8)
at &Z•

an approximation that Is correct to first order in (ka), we find that

A a-I (5.9)

V (coo, sins,-i) a eVq(N.-W)3e6 ' . (5I10)

, is then Siven by

v iqw a ex(& .T) r"' (Cos, ,ino,-1) x (5.11)

+7c.

7c will have zero divergence as required if it is proportional to •, and the boundary condition

that there be no electrical current flow through the surface, given by (3,12), is satisfied to first

order in (ka) if JA-0; the result is

- -I .(cwO, W, -0 a, t a ((coe, sine, -t) x (5.12)

K< op(•"I) C'"

7- a o a X (sine, .-cose, 0) Cep e-s't (5.13)

X - I (cosO, sin#,-I)'. . (5.14)

lhe magnetic field arising from this current distribution may be found by inserting

(5.13) into (3.18). As in section 3, we find it convenient to divide the integral into an integral
over the volume below z-0 and an integral covering the complementary region between z-,0
and the surface at z-tn; upon doing this, we find by inspection that the second integral contri-

butes nothing below the second order in (ka) to the Jmagnetic field, leaving only the first

integral to evaluate. Making the uubstitutions (3,23) through (3.26) and simpfifying the

integration by assuming infinite depth for the ocean as in section 3 gives the integral

Ci, f du f dv fdw (.5
x m w w ,

S(w cos, w sirOu) e,+e,
(u2-- 2+*w2)t'w e' e

'A." +.".Y+L".-•. ++ . L. ,'

4
. . . .. . ... .. .* •. *a _ _ | •I__ •_''a
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C -•'o a x e e1 ° e- . (5.16)

Integration over v gives from this

]()o)-- C u f d (w cosg,._w sing,u) eim e , (5.17)

(r1in which contour Integration In u (closing the contour in the upper half plane) followed by

Integration over w lives

](to)-- 1/4 IoA a X e° el" l C-iC j(2zo) (5.18)

(cas*< 0iI (5.19)

(Coas, -1eI) + 2wzO (cose, sln,-1) zo<o

This has been verified with the curl expression (2.5).

Ii
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6. Gredlents of the field components

Above the surface, the field derived in section 2 for a uniform electric current flow.

given by (2.2) through (2.4), is completely uniform itself, and therefore has a zero gradient.

Below water, though, the field magnitude decreases linearly with increasing depth; the gradient

of the y-comiponent of the field, the only nonzero component, is given by

VD,--MJoi .(6.1)

The calculation of the tensor gradients of the magnetic field derived in section 3, and

given by (3.37) and (3.38), Is made easy by the fact that all. of 'the field components have the

Ssame spati dependence,

j ( r), v oq,(•.) ,(6.2)

where • is given by (3.8) where z< 0 and by (3.9) where z> 0; the gradient of this expression

is given by

i Vf (11) - i rJ• ), (6.3)

where F is defined as above, Accordingly, the appropriate component gradients may be derived'

just by multiplying the individual field components by IN' with r given by

k. Ws¢O, sinO, 1) ,z>O0(64
1k (Cos#~ld,I sn, Z><O*""k (co.G,uli,-I) , < 0 . . (6.4)

Examining (5,18) and (5.19), the field expiression derived In section 5, we seo that the

field above the surface has-the spatial dependence (6.2), and the gradients of its vector corn-
! 4 ponents are found in the same way as those for the field derived in section 3. Beneath the sur-

face the field expression has two terms; one of these has the spatial dependence (6.2), but the

other has the spatial dependence

S gc)- c qxQ•.,) , (6.5)

Sxho~e gradient is

VS )- f+ g (Y•) (6.6)

where r Is defined as in (6.4) for z< 0. In order to calculate the gradient of a given underwater

field component, one multiplies the appropriate component of the first term of the field expres-

sion by ik, then multiplies the corresponding component in the second term by (X+1/z), and

I.
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finally adds together the resulting vectors.

'I

I I

p. i



7. Diawshasi

In the open ocean, the ionospherically induced electric fields that one might expect to

find on an electromagnetically quiet day will have fluctuations on the order of I /A V/m, induced

mainly by the solar daily variation, whose amplitude will be roughly 2x 10-' tesla, whereas dur-

ing an Intense magnetic storm the field intensity might go as high as 10 IA V/m; in the neigh-

borhood of a corAtllne, where there are boundary effects, the field intensities will typically be

larger than those of the open ocean by a factor of 2 to 3. Assuming a uniform electrical conduc-

tivity for the ocean of 3.3 S/m, this implies induced electrical current densities in the open

ocean of from 3.3 sLA/m 2 up to 33 isA/m 2' with larger values near a coastline. Use of this

range of current density values in equation, (2.5), assuming an ocean depth of 5.0 kilometers,

gives for X;, ithe magnetic induction in the air over the ocean due to Induced electrical current

flow within It, a magnitude 'ranging from 1,Ox 10.' tesia to 1.Ox 10-7 tesla and a direction hor-

izontally perpendicular to the subsurface electrical current flow. By comparison, the Earth's

magnetic field over the open ocean off of La Jolla, California, is roughly 6x 10-5 tesla in inten-

sity and has a tilt of about 60° from the horizontal.

The magnitude of the magnetic induction generated by the interaction of an ocean

wave with the uniform current density varies with the angle that the wave crest makes with the

uniform flow, but a root mean square average of (3.39) over time, lateral position, and this

angle gives for z> 0

JA&o A a 2rz/), (7.1)

where a is the wave's amplitude and X is its wavelength. A typical wave amplitude on a calm

day Is roughly 1 meter, and during a storm one might see a typical wave amplitude on the order

of 5 meters. Assuming a wave amplitude of 1.0 meter and using the current density range of

from 3.3 j&A/m 2 to 33 iAA/m 2 gives at just above the surface a magnetic Induction magnitude

range of from 2,1x 10-12 tesla to 2.1x'10"It tesla, assuming that the wave crests are parallel to

the electric current flow.

Performing the same averaging process on (5.18), we get for the mean magnitude iii

the air of the magnetic induction of surface waves moving through the Earth's field

I~ l h 6joa a (w/k) G exp (-2'rz/x) (7.2)

G -,I (FF2 +/F, 2) , (7.3)

where F, is the vertical component of the Earth's field and Fh is the magnitude of the horizon-

* tal component. Most of the surface wave energy in the open ocean off of La Jolla ralls in the

,4'ii
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range of wave periods. from 5 seconds to 15 seconds, equivalent to an angular frequency range

of from 0.42 .vc- %o 1.26 kec-1; using the dispersion relation for surface waves on a deep

ocean,

02 t-o ' (7.4)

(Sommerfeld, pp.168-173), where g is the gravitational acceleration and has a value of about

9.81 m/sOC2, we calculate a range of phase velocities (w/k) of from 7,8 m/sec to 23.4 m/sec.

The value for b in the vicinity of La Jolla comes to about 6x 10-5 tesla, and if we again assume

a wave amplitude of 1.0 meter and an electrical conductivity for the ocean of 3.3 S/m we get a

range of magnitudes for the magnetic induction at just above the ocean surface of from'

6x I0r10 teda to 2x lI r'teds.

Mw uniform field discussed in the first paragraph, that is produced by the ionospherl-

tally Induced current flow, is at the weaker calculated extreme a little less than four orders of

magnitude down from the Earth's field, and will generally not be detectable. The two wave

interaction eff"ts are roughly five orders of magnitudo down from the Earth's field, but their

periodic nature, both spatially and temporally, should allow them also to be detected. Except in,

the presenm of a powerful magnetic storm the wave-magnetic field interaction effect discussed

in the previous paragraph will typically be roughly two orders of magnitude stronger than the

wave-curremt interaction effect discussed in the second paragraph, making the letter difficult to

resolve from the former, as above the surface they have the same spatial dependence.

Although them effects both scale linearly with the wave amplitude, making their ratio Indepen-

dent of this quantity, the wave-magnetic field interaction effect Is also directly proportional to

the phaso velocity of the wave In question, which increases linearly with the wave's period as

long as the deep water approximation is valid. The two wave Interaction effects are seen from

rough calculations to. have comparable magnitudes in the extreme case of a surface wave with a

period of 0.16 second or less in the presence of a strong magnetic storm.

- ''NV%.'U '* ...
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c1 I
Chapter 1I

Magpetle Anoinalies Induced by Bottom Features

1. Fatro~dioace

We consider in this chapter magnetic anomalies associated with the presence of rocky

projections from and depressions in an otherwise level ocean floor. Only magnetic effects due to

electrical current flow within the water of the ocean are considered; magnetic effects due to

magnetization of the ocean floor, to the magnetic properties of large projections of magnetic

minerals from the ocean floor, and to irregularities of magnetization of the seafloor rocks are

covered in other works (see for example Latson et al,., 1974, or Vacquier, 1972). In this treat-

moent, a large scale, horizontal uniforni electric current flow driven by sources of EMF outside

of the ocean Is assumed, and the local distortion of this flow by the presence of a bottom

feature (treated as an Insulator), is determined; then, by means discussed in section 2, the

magnetic field pertqrbatlon associated with this electrical current flow distortion is calculated.

As the scale of the bottom feature in question will typically be several orders of magnitude

greater than the amplitudes of any waves on the ocean surface, the simplifying assumption of a

completely flat ocean surface will be made.'

In section'3, in order to give some feeling for orders of magnitude, numerical calcula.

* tions are made of magnetic fields and the tensor gradients thereof, associated with a submerged

hemisphere with a radius half the depth of the ocean and resting on a level ocean floor. In sec-

tion 4, the problem of a localized bottom feature of arbitrary shape is considered, and section 5
gives a quick algorithm for approximating the electrical current flow deflection by bottom

features of small aspect. Section 6 covers in detail the magnetic effects of small features of low

• uaspect on the ocean floor (such as a low ridge or shallow trough), a subject touched lightly upon

, , in section 4 of chapter 1 FRnally, section 7 briefly discusses the problem of the, magnetic

S ' effects due to the interaction of seawater current flow over a bottom feature with the EArth's

magnetic field.

20
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2. Mathematical methods

2.1 The basic Integration formula

The basic formula for computing the magnetic field A due to an electrical current den.

sity distribution 7 within the ocean is the law of Blot and Savart as applied to a continuous

electrical current denisity distribution,

dX - I x)-- ; (2.1)

7 (x) is assumed to have already been adequately determined for practical purposes, and may be

taken as a given.

In practical calculations, Ath selected volume of Integration is broken dowrn into rec.

tangular boxes, and the electrical current density vector 7(,x'Y and its tensor gradient at the
geometrical center .. of each box are determined; the current density distribution throughout

* the box is then assumed to be given by th; formula

)- ) + 0-.74' 00) ,(2.2)

Also, It is assumed that the distance between io and .C is much freater than the thaximum
dimension of the box, allowing the expansion of the denominator of the integrand of (2.1) In a

binomial series. Given these assumptions, one can write an algebraic expression for the contri-

bution to the integral (2.1) and Its tensor gradient of any given box In terms of the box dimen-
sions, the position .f of the center of the box, and the electrical current density and its tensor

gradient at .

We start with a variation of (2. 1),

X)- "0dPt* (2.3)
t tt

where

o- Xo (2A4)

Y'-4 +V (2.5)

and R denotes the rectangular volume of integration centered on the position ',; the vector

Is a small offset from Zo in an arbitrary direction, and Is used to find the tensor gradient or A at

io. For the current density distribution In the numerator of the Integrand we write

I& .,!IS D~59 i~ %%s. %% ~ ~ ~ '
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' Y+X7•+) - o + RV (2..6)

or

Jt (+V) AJ + Mv , (2.7)

and expansion of the denominator giyes

+ +1.. (-2 (2,8) 3

", 1- 8z z16 j3 " ,

where C

Fo. ('!-T), (;r). •- ) +!
x- 2 (.÷ - (2.9)

Insertion of (2.6) and (2.8) into (2.3) gives a series expansion In 'r0, xs, and 7 for the
integrand, only a few terms of which are of practical interest to us, The terms in this series

that are linear In X1 are sufficient for the determination of the tensor gradient of the magnetic

field, and so terms quadratic or higher in Z' may be ignored; also, due to the symmetry of the

volume of integration about.4, the integrals of terms linear or .cubic in V vanish, and those of

terms quatic or of higher.powers In V will in general be small enough In comparison io the

integrals of terms quadratic or constant in V to be safely diAregarded in practical calculations.'

These two conditions together eliminate all terms in the expansion (2.8) derived from terms

quartic or higher in z, and most of the terms In smaller powers or z in this expansion When

all terms of Interest are taken into account, we have from (2.3)

0 (KO).i4 1ý-L T -0 1CI C (2.10)

- 3ro(Jo X Uj) + 3ro'0(MjT x × o) - raLY3 ]

and

(Toc X;"•o) 3 ±', ; 105 W'XI,+ 15C 3 }(2,"1)

voi ( 1ar 2 ro
+ W.o× Xi) I- _jC + 15C2 .- x {3to72 - 15 ( 71.)•}'

2.

S I..

(.. ~4 5 .5~ ~~ ~ .~.%%V %.ai~s~V' ~ *.-:
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+(3roKLt2- 15(rY'ij)Afj1 ) X Fo*+ 3ro(Mk.71 x il) +3ra(fPKi"),O]

where

L (s2 W s2  0.,SVv) a (2.13)

- Ill (SI 1x1421, 2x,2 S 13)

* m j~ WO x.~ (2.14)

mil 0 -M 3  (2.15)

where M

[M11 M12 M131.
M 1M 21 M22 M23 (2.16)

* 1~M31 Ml32 Mt331

C, v am V-7 v (2.18)

Msl+S 2+,s3
C2 r1Y W(.9
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cW ¢;*- Lf .v) 7.v) a (2.20)

LIT

where

VO ~mdvwedidAd (2.21)

re -(2.22)

and

s , d 1-1,2,3 , (2.23)*12 4i

d, beiag the dimension of the volume of integrtion in the direction Sq. The basic relation used

for the evaluation of the above Integrals is

Vs Pgjav - ri O So .S4 (2.24)

where 8U is the Kronecker delta. Expressiorn (2.11) may be rewritten in the form

I1 ac*+-•) - I Vo) + IV, (2.25)

where the construction of the tensor T is just a matter of sorting the coefficients of the vector

elements of Z in (2.11) into the proper tensor elements of T. When the field A is expressed

in this form, it Is apparent that T is the tensor gradient of A at the point Zo.

.44S.
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2.2 Corredt e for alp effect erron

One difficulty in the practical use of (2.1) is that it makes the implicit, assumption that

the entire electrical current density distribution. is contained within the volume of integration.

and use of a volune of integration that has a current flow through any part of its surface results

In the appearance of nonphysical elements in the results of the integration. As an example of

this effect we consider the case of a semi-infinite wire extending trom the origin in the positive
1t direction out to infinity and carrying an electrical current In that direction. in this case (2.1)

becomes

, •(,•))- . ( .-,,..--x ZO)•2 (2.26)

;0- (xo,YozO) , (2.27)

P.- A + 4 (2.28)

this reduces to

4w•) Xt/ (•xro) K.(o (2.29)

or,

1 (46~) T,7 PoA K(i(;o) (2.30)

where

K I'WO) - ¢(o-x)2 -p1•' (2.31)

r- xj + pi (2.32)

(CRC, p. 322; eq. 196). For large distances from the origin and relatively much smaller dis-

tances from the origin this gives

lira NVo) - &-...o (2.33)
Xo'-'*"27rpo

the field around an iafinitely long wire, as one would expect on physical grounds. However, if

we use Ampere's law to compute from (2.29) the electrical current density outside of the wire,

I ... •, .,'•r••••,;,.,;•• f•, ,,.;•'r.•< .',.';<.,r''-"',•-..:.'';'?...
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which on physical grounds Should be zero, we get

-cr) - 1  VxH .W) (2.34)

~1 - - -0 r 2 - ;

the physical interpetation of this expression indicates a current density distribution converging

on the end of the wire at the origin in such a way as to feed a total current 10 into the wire end,

-In senerai, it seems that assuming a source or sink of electrical current in the postulated electri-

cal current density distribution results in a mathematical artifact that, if taken at face value,

• cancels out the source or fills in the sink.

In the calculation of magnetic fields associated with localized bottom features, one ,will

typically be dealing with an electrical current density distribution anomaly the bulk of whose

magnetic effects arm produced by the part of the distribution ip the immediate neighborhood of

the bottom feature, but which gives minor contributions to the magnetic field at substantial dis-

tances from the feature; in numerical calculations of the magnetic field the approach that first

suggests itself is to consider only the volume immediately about the bottom feature, tolerating

errors of perhaps a few percent in the field values of Interest in order to avoid expensive

integration over large volumes of seawater. On the basis of the example of the semi-infinite

"wire, It appears that if this approach is used it must be used with care, as neglecting the

extended part of.the current density distribution not only results in errors of omission, buit may

also contaminate the calculated values with mathematical artifacts.

A method for dealing with the artifact problem may be derived by viewing an infinitely

long, straight, current carrying wire, tor which there is an artifact-free solution for the magnetic

field and its tensor gradients, as being composed of two semi-infinite wires pointing outward

from the origin in opposite directions and carrying currents of equal magnitude and opposite

sign. From the observation that the artifacts associated with the two wire segments must exactly

cancel, we deduce that any terms in the magnetic field expression for a semi-infinite wire that

contribute to the artifact must be asymmetric with respect to simultaneous reversal of wire

direction and current direction, and we infer from symmetry argument- that any singularities in

the artifact terms must be at the origin. Given that these constraints are sufficient to uniquely

identify those terms contributing to the artifact, once an artifact correction expression for a

semi-infinite wire has been derived it may be use as a Green's function for a 3encral current

density flow through a surface..

-I
• •, ,,•,¢..,¢•, .. ••.• . •,..• €,• .. •..• .,• .. • ••. •• •.•, •,•',.•.", • •'.,• :.... . .. .. ,,.. . .... ..... .......... . ... ... • .. .- ... ... .
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To derive an expression for'a semi-infinite current carrying wire pointing from the ori-
gin in an arbitrary direction, we start with a binomial expansion of (2 1), after the manner of

(2.3);

11 WxOOy) I •(io) I,-y -C •(Xoy) ( 2.35)

4w

F* Y) -40 'Owf ..... d? (2.37)

We let 0' be the unit vector of the direction in which the wire points outward from tho origin;

and we let 1o'be the current flow out of the origin. Then (2.36) and (2.37) become

jr cy)W Nx1)L3 ) (2.38)•4w

and

B2%x-,Y)- (i t x) 44oL 2(xo. )- 0 'L3(rx)}.Y (2.40)

2W-) -'3 T.(2.41)

tdt * ()-- 3 (2.42)

It is seen that LI( -o) is a generalization of K, Vo) as defined by (2.31); if we define

x0"- *."oo (2.43)

PO -- X 0 (2.44)

Pi - IFo'7*O (2.45)

- - X-

Pe-- o'• ,(2,46)

then (2.39) be(omn..j
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L (i f - xi•..t),+i.o13 (2.40)

which, since by (2.43) and by (2.44)

CV-j; 0(2.48)

* "becomes

- ________ (2.49)
i0

This is -the same Integral as in expression (2.31), and its solution in this context is

SLI(1)- 1j+";O I' (2.50)

where p. and ro are as defined by (2.45) and (2.46) respectively, a similar process gives for L 2

and L3

L2i U I2,5+11.

* and

LA(io) - (4-IZ) 2,(') + d (2.53)

By (2.44) and (2.53), (2.40) becomes

x~)--(AXx)pL()- 7  V (2.54)

which by (2.51) becomes

• oy) oo[. { . .4•* } .L,(i') ]y(2.55)A*6O) 0- (OX ) 17i I ;o - I + 2 •o

Finally, we have for 2(.'o)

I (Fo)- o_.. (f< X0) L (io*) (2.56)

or, in a cylindrical coordinate system centered about the wire and with its axis in the 4, direc-

tion,



* 29

A00 oI LIOro (2.57)

Reexpressing (2:35) With an eye toward symmetry, we have

where the perturtation terms symmetric with respect to simultaneous reversal of lo and 0 are
IrJ (46)- -(Y + -jo 0 . ) (2.59)

and those that are antlsymmetric are

CI G, Y) A"1 -7 -1pop-P- .7 (2.60)

and

(2.) r V

STaking. derivatives, we find that

PA0 , (2.62)

whereas

vx•G -Vx• 2 -o . (2.63)

* It is apparent that the field derivatives associated with B 1 are artifact-contributed. On the

* other hand, AA 2 is not Implicated as artifact-producing by the curl test, and is eliminated on the

grounds that, like Bs and unlike BAI, it becomes singular everywhere along the axis of the

wire. Hence, In (2.60) we have an expression that can be used for the correction of artifact

effects In the elements of the tensor gradient'of the magnetic field. It is undesirable to make

an artifact correction to the magnetic field Itself, since in the nonphysical truncation of a
* ; current flow one just loses the field contribution from the truncatcd section of the current flow

without also gaining a nonphysical field component in its place; it is essentially the absence of a

field component where one would expect It on physical grounds to be that is responsible for the

nonphysical behavior of the field derivatives in the case of the semi-infinite wire,



30

2.3 Streaaline tracing

In numerical exploration work it is frequently desirable to trace streamlines 'of electri-

cal current flow, perhaps to check for peculiarities in the flow distribution that might require

special programming to handle. The simplest approach to streamline tracing is to pick a starting

point, find the current density vector at this point, extrapolate in the direction of the vector
,.* 1from the starting point over some convenient interval of distance to a new point, and,, using

wiphes to trace; however, in problems where there is some region in which the direction of the

current density vector changes rapidly with -position (a characteristic of most problems of practi-'

* cal Interest), this method can lead to large cumulative errors unless the stepsize is kept expen.
sively small To deal with this difficulty, a more complicated method of the, predictor-corrector

type was developed, and was found to be satisfactory.

We assume two parallel planes separated by a distance d and a streamline passing
through thm ' both, intersecting the first plane at the point io and then the second plane at the

point .; the electrical current density is given for everywhere between the planes. The basic

; idea of the method is that if the direction of the current density vector 9r at the point ;, along

the streamline midway between the two planes Is determined and a line is ext6nded from i0 in
the direction of f* until It intersects the second plane, then the point of intersection will be

very close to Jr. provided that, the curve of the streamline is roughly uniform and reasonably
gentle. To approximate the position of this midpoint, we first determine the current density
vector ;'0 at the point i, then draw a line from Zj In the direction of Vo until it intersects the
second plane at the point .*;

x, x-- d + , (2.64)

where A Is a unit vector perpendicular to the planes and pointing from the first plane toward

the second. This line will miss Z on the convex side of the streamline. We then find the point

X2 midway between Xo and I,

X 1V- + (2.65)

d VO

*2 D'0.;.+X

and find ;' the current density vector at X"2; this vector should be a somewhat better approxima-
tion to r, than Is ro. We then draw a line from .X0 In the direction of V until it intersects the

second plane at the point ";

.4L
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jr- d' =+ ;0* (2.66)

This line should miss 9. on the concave side of the streamline. The point Z4 midway between

x3 and is liven by

• x4- 'A• ( o)+ X0 (2.67)

S d 2"X .• =• + Xo

The point is midway between i' andX 4,

iS V-2 ' (2.68)

should then be fairly close to ., and the current density vector S at 3 should be a good

approximation to rm. Finally, we draw a line from .o In the direction of S until it Intersects

the second plane at the point i;

xG.. .• IIdj +•4 . (6.69)

The point i within the second plane should then lie very close to j,, Although this method

requires coasiderably more calculation per step than does the simple extrapolation from io

along the direction of Vi0, it permits one to safely increase the step size to the point where the

total amount of calculation needed to trace a given length of streamline is much less than that

"! !required by the simple extrapolation method.

For problem's in which a streamline may double back upon Itself, Sivinp rise to the

- •possibility of denominators going to zero in some of the expressions given above, this method

may be modified to suit. In this case, we picture a sphere of radius d centered at the point Xo,

and postulate a streamline passing through xo and emerging through the surface of the sphere

at the point ., The formulas corresponding to (2.64) through (2,69) are

d + X-0(2.70)
I V4oI

2-~ Y0 , + X0 (2.71)

x3- v' ZO(2.72)

Lv,, .. k
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1 2 + Xd (2.73)

2 IX--•)+(o)I +X 0  (2.74)

• (2.75)

where • is the method's approximation to i0. Noto that, due to scaling opportunities not
present in the previous cae, d and (e and 1 respectively,

S ,thereby eliminating the need to calculate•4.
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3. Magnetic anomalies in the -air above a submersed hemisphere

In order to gain some feel for the orders of magnitude of the magnetic l.eld values
associated with a localized bottom feature, we consider' the case of a hemisphere with its base

resting on an otherwise level ocean floor -and with its radius equal to half of the ocean depth.
An electrical current density field, uniform at large lateral distances from the hemisphere, is

induced within the ocean by an outside source of LMF, and. the anomalous magnetic effects

associated with the bottom feature are defined to be thosi: arising from the perturbetion on the

uniform electrical curtent field caused by, the feature.

The calculation of the electrical current field is based on the placement of current

dipoles In much a way as to satisfy the boundary conditions of the problem, these being that

there should be no current flow through either the ocean floor or the ocean surface. The basic
formulae for the estimation of the appropriate dipole strengths are those for the electrical

current density distribution about and within a sphere of radius a suspended In an infinite

ocean within which the electrical current density field approaches ,Jk at large distances from

the sphere,

f31

A(O) , r<a (3.2)

where r is the distance from the center of the sphere and the direction of 9-0 is parallel, to k,

expressioh (3.1) is the gradient of the potential

0(0A) - A[ + come (3.3)'!1J

which is a solution to Laplace's equation, and (3.2) derives from a trivial solution tO &aplace's

equation. It may be verified that on the spherical surface defined by r-a the curren density

field component 74 normal to the surface is equal to zero. Expression (3,1) is seen i ) be the
superposition of a uniform field Jk and a dipole field having a strength of (Joa3/2) and a

direction antiparallel to the uniform component. These expressions also apply to the case of a

hemisphere of radius a resting on the floor of an ocean of arbitrarily great depth, as the
cylindrical symmetry of the sphere problem about the x-axis guarantees that no streamline will

Intersect a plane containing the x-axis. The case of a hemisphere resting on the floor of an

ocean of finite depth may be approximately dealt with by setting up an array of many dipoles of

equal strength and a common orientation antiparaliel to the uniform field Jok, equally spaced

along a line perpendicular to Ic with a spacing equal to twice the ,depth of the ocean. i' the

4.54l ' i • : : : " .. : " - .5 *" " .
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ocean floor i taken to correspond to the plane bisecting this line at the central dipole of this

array, and the ocean surface to the parallel plane midway between this dipole and the dipole

immediately above it, then by' symmetry there is no current flow through either ocean bottom

or 0oce. u.facc; however, due to the effects of the dipoles on either side of the central dipole,

the surface about this dipole on which 7'.F-O is no longer a perfect sphere, but an oblate

spheroid. The degree or this hemispherical distortion wa examined by use of a streamline trac-

1 ing program with graphical output, and it was found for an array of five dipoles that if the value

of a Is no more than half of the ocean depth then the deviation of the surface about the central

, dipole from a hemispherical uihape. Is difficult to see with the unaided, eye, implying a distortion

Sof no more than about 5% of a.

Granted that this method adequately gives the electrical current density distribution

within the ocean, the next step in the magnetic anomaly calculations Is to use expressions

"(2-10) and (2.11), giving the magretid effects dub to the current density distribution within a

rectangular box, for incremental integration over the current density field to estimate the total

magnetic field and .its spatial derivatives at various points of interest, The procedure thai was

constructed to do this starts withthe selection of a volume oe Integration having a rectangula'

horizontal cross-seion and reaching vertically from the ocean floor to the surfacei covering a

substantial area of the ocean floor about the bottom feature; this volume Is oriented so that its

vertical fWes are either parallel or perpendicular to the I• direction, The volume is then sec-

tioned by a -At of equally spaced planes perpendicular to the k direction, and also by another

set of equally spaced planes (not necessarily the same spacing as the first set) both vertical and

perpendicular to the first set, thus breaking the horizontal crosssection of the volume up into a

regular rectangular grid. Then, one goes to the bottom edge of the upcurrent face of the

volume of integration, and draws a horizontal line along the face slightly above the adge, mark-

ing the points along this line that intersect the sectioning planes parallel to k; these points serve

as starting points for the tracing of'a streamline surface, the algorithm for which is given in the

*• next paragaaph. The objective of this part of the procedure is to trace out a streamline surface

running very close to the ocean bottom, and use this surface in subsequent calculations as the
base of the volume of integration; this is substantially less cumbersome than numerically speci-

* lfying the shape of the ocean bottom, and the error Introduced into the calculations by this

approximation may be made negligible by starting the streamline surface tracing algorithm

sufficiently close to the actual bottom. The tracing algorithm yields the points of intersection

between the streamline surface and the regular array or vertical lines which are defined by the

intersection ot' the two perpendicular sets of sectionin g planes, One constructs a rectangular

volume about each one of these vertical lines from the point where it intersects the ocean
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• bottom to the point where it Intersects the ocean surface, and then then divides this into small

rectangular boxes, to each of which the expressions (2.10) and (2.11) are applied and the mag-
netic field contributions therefrom summed- the latqral dimensions of the rectangular volume
taken to be about each line are determined by the spacing of the lines, and chosen so that the
vertical faces of these volumes meet, thereby covering the whole volume of integration. *The

current density distribution used with these expressions is the anomalous current density distri-
bution, which. is the total field with the uniform component Jo* subtracted off; the current den-

sity field between the ocean surface and the streamline surface is then only the superposition of
the individual dipole fields, and the field below the streamline surface and above the ocean floor
is just -Jot, with the field everywhere else being equal to zero.

The algorithm used for tracing a streamline surface Is partly based on the first stream.

line tracing algorithm discussed in section 2.2. We suppose that the sectioning planes perpendic.
ular to k are separated from each other by a distance d, and that on one of them we have a set
of points along the intersection curve of the plane with the streamline surface, these points
being thepoints of Intersection between this curve and the vertical lines de~ned by the inter-
section of the plae and the perpendicular set of sectioning planes, Using a single step of the
streamline tracing algorithm for each one of these points taken as a starting point, we get

another set of points on the next plane over in the , direction, to which we can fit another,
slightly different, curve; in general, these points will not lie on the vertical lines of Intersection

in this plane. Finally, we go In turn to each ,of the vertical lines of intersection of the second
plane, and fit a cubic polynomial curve through the four points nearest it (these usually'being

the two nearest points on either side of the line), and-and record the point where the fitted
curve crosses the line. This last set of points may be used to start another step or this algo-
rithm, which may be used recursively to trace the points of the entire streamline surface, As a
final check of accuracy, one may note whether or not the streamline 'surface tends toward a flat

sheet slightly above the level ocean floor as it is extended past the localized bottom feature,
Note that it is unnecessary to trace out and store the points for the entire streamline surface

before proceeding with the integration; it is possible to perform the integration for a given
plane after computing the streanline surface points of that plane from those of the previous
plane, add the results of the integration to an accumulated sum, throw away the points of the
previous plane, and then go on to the next plane, and so on, with considerable savings In pro-

gram array storage space,

In dealing with the electrical current density distribution truncation error problem dis-
cussed in section 2.3, a method that has proved reasonably effective in practice Is to examine,
in thn course of integration, each ot.the -rectangular boxes that constitute the basic unit of
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integration to see if it has one or more faces on the outside of the volume of integration; if an

4t outside face is detected, then the current density vector at its center is multiplied by the area of

the face in order to estimate the total current flow through the face, and then equation (2.60)

from section 2.3 is used with this information to calculate corrections to the elements of the

tensor gradient or the magnetic field. Failure to make such corrections will result In nonzero

values for the cud of the magnetic field in places, such as empty air, where there is no electrical

current; practical experience has shown that these tensor element corrections can be comparable

in magnitude to the elements of the corrected tensor, A further problem, exists in that the

current density field on the faces of a box is estimated by the imperfect method of extrapola-

tion from its value and tensor gradient at the center of the box, and that therefore one can

expect MliMht discontinuities in the current density field as one passes from one box to the next;

properly, the effects of these discontinuities should be corrected for with further applications of

(2.60). Also, there will be minor errors from the use of (2.60) on the outside box faces with

what amounts to face-averaged current densities, rather than the more correct procedure of

integratinS (2.60) over the surfaces of the faces iii question, However, both of these additional

sources of error can be reduced by cutting down on the size of the basic unit of integzation,

and, with the primary source of error allowed for as described, practical calculations imply that

accuracy to two significant places seems feasible.

The actual calculations were done for a roughly hemispherical shape of radius 4.0

meters at Its base on the bottom of an ocean 4.5 meters deep (see figure 2.1), assuming a uni-

form electrical current density field component of 1.0 anpere/meter2 in the a direction; scaling

relationships may be used with the fields and their tensor gradients calculated for this model to

estimate the corresponding values for a somewhat larger system with a different uniform

current den'llty field component. The flattening shown in the figure near the top of tho projec-

tion from the seafloor is the result of the use of only five dipoles to simulate the electrical

current flow about a hemisphere in the close vicinity of the plane of symmetry which in this

representation stands for the ocean surface. Had a much larger number of dipoles been used in

the simulation, this flattening effect could have been greatly reduced, yielding the flow-pattern

about a nearly perfect hemispherical surface; however, such a flattening at the top is in fact a

characteristic of some oceanic features of interest, such as seamounts, and accordingly Is more

realistic for features of this sort. The basic unit of integration was a cubical box 10 centimeters

on a side, and the grid spacing of the vertical lines of intersection of the sectionlnB planes was

10 centimeters by 10 centimeters. At each one of these vertical lines, cubes were stacked from

the ocean floor upward until a cohe extended beyond the streamline surface, at which point this

cube was truncated level with tha streamline surface;, expressions (2,10) and (2.11) were then
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FIGURE 2.1

* Streamline flow over the roughly hemispherical bottom feature In Lhe vertical plane parallel to

* ~the flow at a distance from the feature aind passing through the centerline of the feature-, to

point up the extent of the deformation from the flow pattern over a perfect hemisphere, a hem-

* Isphere of the appropriate radius is superposed over the streamline pattern.
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used, assuming a uniform current density field of .1.0 ampere/meter2 IC within all of' the

integration units. Then, cubes were stacked from the top of the truncated cube untii one

extended above the ocean surface, at which point this cube was truncated level with the sur-

face; the current density fields'and their tensor gradients used in expressions (2.10) arnd (2.11)

"ore generated by the five dipoles making up the vertical dipole array for this problem. The total

volume of integration was 20 meters by 20 meters laterally by 4.5 meters vertically, with the

hemisphere located at its bottom center. Tracing of the streamline surface was. started 15 cen-

timeters over the ocean bottom at the upcurrent edge of the volume of integration, and its

extrapolation at.the downcurrent edge of this volume differed no more than 5 centimeters from

this height at any point along the upcurrent side, verifying that the extrapolation hOa been

properly doce. Calculations were done for various points of interest in the air over the ocean

surface, and the results are presented in table 2.1. The x-axis of the coordinate system points in

the direction of the uniform component of the electrical current nlow, and the z-axis points

upward; the origin of the coordinate system is on the ocean bottom, at the center of the hemi-

aphere.

We make this work useful in practice by developing scaling relations for the magnetic

field and its tensor gradients in going from one system with one length scale to another system

with a different length scale but with the same ratios between its various length parameters as

the first system. Referring to equation (2.1), we see that the magnetic field is linear with

respect to the electrical current density. Further work with this equation, experimenting with

changes of length variables by multiplicative factors, indicate that if we have twc systems,

identical except as to scale, and BI, Jr, and d, are magnetic field, electrical current density, and

length pmaameters of the first system whereas B2, J 2, and a2 are tWe corresponding pIrameters

of the second system, then we have

B2 8 J2 d2  (34)

the same process applied to spatial derivatives of equation (2.1) shows that if B1 ' and B2' ar':

corresponding magnetic field gradients for the two systern-s, then

B-• - J2 (3.5)

30B' Jl

which is to be expecte'J, as the larger system will show a smaller percentage change in a field

value than the smaller system for a given change in position,

As an example, suppose that we wish to find the magnetic field and its tensor -radients

at a point 1.0 kilometer in the air over the surface of an ocean 4,5 kilometers deep, with a
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y-4.0meters x x- 0.Ometers x -4.0 meters
S0.000 -0.111

By 0.132 0.137
B, -0.338 -0.194

4, -0.048 0.002
B 0.000 .0.001* 0.030 0.048

Atop -0.084 -0.055
.0.016 -0.007

B. 0.132 0.053

y '-0.0 meters x - 0,0 meters x - 4.0 meters

.8., 0.000 0.000
B, 0.473 0.325
Bz 0.00 0.000

B= 0.000 0.000
BW0.000 -0.050

Ba 0.000 0.000
By 0.000 0.000
8-0.181 -6.088
D, 0.000 0.000

TABLE 2.1

Field and field gradlent values at selected points in a horizontal plane 1.0 meter above the,' sur-

face of an ocean 4.5 meters deep with a hemispherical bulge of radius 4.0 meters resting on the

bottom, as described In the text on page 36. The field values are in unitr 4, 10-6tesla, and the

field gradient values are in units of 10- teslalmeter. The origin of the plane is on the axis of

the bulge. In the absence of the bulge the field would be a uniform B- -2.82x 10"i) tesla.

'
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shape such as illustrated in figure 2.1, having a radius at its hase of 4.0 kilomnctur,-' iosting on

the ocean floor directly below the point; we assume a uniform clectru,'al conductivity ui' 3.3 S/m

for the ocean, and suppose that sources of EMF outside of the ocean iiaduce an essentially con-

stant electric field within it that is a uniform 1.0 IA V/nm in the .i direction at great distatnces

from the distorting effects of the hemisphere. The system described is that of table 2.1 scaled

up in size by a factor of 1000, With an electrical current density at, large distances from the

hemisphere of 3.3x 10-6 a#mere/meter2 in the Ic dire-lion, as opposed to 1.0 ampere/meter2 for

the smaller system. From equation (3.4) we then have for the, field values' that

B 2 -3,3x l03 Bh, and from equation' (3.5), we hqve for the field value gradients that

B2'- 3.3x 10-6 B1'. Referring to table 2.1 to get the field values directly above the renter of

the bottom feature, we therefore hnve for By, the only nonzero field component, a value of

1.6x lOr 9 tesla, and for B•, tid B,,, the, only nonzero tensor gradient elements, a common

value of -6.Ox 10"-1 tesl•, per"meter. Using this procedure, we scale up the contents of table

2.1, giving the results in table 2.2.

* As there are no electrical' currents in the air above the ocean surface, the magnetic

field In this region can be expressed as the gradient of a scalar potential which is a solution to

Laplace's equation. The principle restriction on the practical use of the method or magnetic

field computation discussed in thetext above, that the points at which the field is computed

must be a distance above the ocean surface that is on the order of many times the largest linear

dimension of the basic unit volume of integration, can in principlk be circumvented by fitting a

general series expansion solution to Laplaces equation to the values computed by this method,

and then using the resulting potential expression to compute the magnetic field and its tensor

derivative. at points elsewhere; probably the bbst such solution to Laplace"s equation for this

purpose is an expansion in the spherical harmonics about the center of the base of the hemis-

pherical shape, using only those terms which vanish at arbitrarily large radial distances from this

point. However, one should bear in mind that downward continuations of this sort tend lo be

numerically unstable, in that small errors -in the determination of the field values at the 1E0

kilometer altitude above the ocean surface can easily be multiplied to large errors in the valueT

computed at the surface from the potential expression, and that the field gradients computed by

the method of this section are mildly prone to distortion by the effects of those mathematical

artifacts which cannot be completely compensated (principally those introduced at the faces of

the basic rectangular volumes of Integration making up the simulation volume, and in particular

those faces which are on the outer surface of this volume); it could easily happen in many cases

that the continuation errov exceeds the magnitude of the value being compuited, and It Is

recommended that in fitting the potential expression to the values numerically determined m\

m%

,• •,,r m • •' -S" • • -.. rm . - ,m m m •
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yw,,4.0km x-o.Okm x-4.Okin

B, 0.00 -0.37
By 044 0.45
Bs -1.1 -0.64

Ba. -0.16 0.005
B, 0.00 -0.003
Bn 0.00 0.16
B, -0.28 -0.1.8

B0.05 -0.02
.0.44 0.18

y-O.Okm x-O.Okm x-4,Okm

Bx 0.00 0.00
By 1.6 0.11
B.0.00 0.00

Bx 0.00 0.00
Bw0.00 -0.15

B., 0.00 0.00Ij B• 0.00 0.00
B, -0,60 -0.29

B,, 0.00 0.00

TABLE 2.2

Field and field gradient values at selected points in a horizontal plane 1.0 kilometer above the

surface of an ocean 4.5 kilometers deep with a hemispherical bulge of radius 4.0 kilometers

resting on the bottom, as described in the text on pages 38 and 40. The field values are in units

of 1O'tesla, and the field gradient values are in units of 1O'l 2 tesla/lneter. The origin of the

plane is on the axis of the bulge. In the absence of the bulge the field would be a uniform
9--9.3x IO-t. iesla.



42

* moderate to large distances above the ocean surface one relies heavily on the magnetic field

vector elements, which should be somewhat less contaminated, by mathematical artifacts than

the tensor gradient elements.

"S
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4. Solution for the electrical current density distribution In an ocean with arbitrary bottom

features

Given the methods of section 2, the magnetic anomalic's resulting from a given bottomt , feature may be comp~uted provided that the electrical current. disturbances associated with that

Sfeature are known. In this section an algorithm 'is given for finding the electrical current distri-
bution about- localized bottom feature of arbitrary shape,

The construction process starts with a level-surfaced ocean of indefinite depth, within
which there is a horizontal electric field presumed to be induced by sources -in the upper atmo-

0here. This primary electric field. AD I~i taken to be the gradient of the potential 06, ,nd Is
assumed to induce, an electrical current .distribution A according to the relation

Ao Cr ,70 (4.1)

where a- is the electrical conductivity distribution for the ocean.

A pillbox-shaped closed surface is then postulated, whose top is the level oceau sur-

face mid whose bottom 'has the shape of a hypothetical ocean floor profile; this profile is taken

to be level and parallel to. * except for a region close to the axis of the pillbox, where the

profile is allowed to take any shape that does not intersect the top of the pillbox. We now

assume a potential • and in electrical current ,density distribution 7 such that

7-o'-V'(•''t) , (4.2)

and require as boundary conditions on 7 that its component nbrmal to the pillbox surface

should be zero at all points of the top and bottom of the box (indicating the absence of current
flow through either boundary), and that the pillbox sides should be far enough removed from

the central disturbance that 7 may safely be assumed to be equal to .

The boundary condition on 7 at the top of the box is already' met by jo, so we have

for €1 there that

i'Voi - 0 ,(4.3)

and at the bottom of the box we immediately have from (4.2) that

(4.4)

where A is the inward-pointing unit vector normal to the box surface; since by hypothesis jI is

parallel to the bottom except near the axis of the box, this reduces to (4.3) over most of the

box's bottom. On the box sides, the condition thaft ,7-,0 implies by (4.1) and (4.2) that

j "
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V41= 0 .(4.5)

The normal derivative of 0 is therefore specified over the entire closed surface or the pillbox,

thereby constituting Neuman boundary conditions, which are sufficient to.define a solution for

-01 unique to within an additive constant. We thus have 7 everywhere within the box; as 1
meets the boundary conditions appropriate 'to in electrical current density distribution, within an

ocean having the specified bottom topography, the problem is solved. For methods to compute

01 given Neuman boundary conditions, see Forsythe and Wasow, 1960.

IMq
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* 5. A quick, Inexact method for approximation of the electrical current density distribution

due to a localized bottom feature

For situations where the aspect of the bottom feature is small, a quick if inexact

method for estimating the associated electrical current flow disturbance is outlined. As. in the

previous sectlon, one assumes a horizontal electric field g such as would exist in the absence
of an ocean bottom, constructs a hypothetical surface within the 'ocean having the shape of the

actual bottom topography, then calculates at each point on this sheet the component ofA
parallel to the stirface no, nrnal. A surface charge di.stribution over the bottom sh'eet is then

estimated that will give rise to an electric field whose normal component at each point on the

sheet exactly cancels the corresponding normal component of f0. The supplementary condition

that there be no electrical durrent flow through the ocean surface (which -is assumed for con-

venience to be level) may be met by constructing a system of image reflections of the estimated

surface charge distribution through the planes of the ocean surface and the level. ocean bottom

from which the bottom features are taker to protrude. This method is stuggested by the physl.

cal observation that an electrical current flow over a bottom irregularity will in fact deposit

charges on the irregularlty's surface in a fashion tending to divert the flow away from the irre-

gularity.

There appears to be no rapid, straightforward algorithm for deriving a surface charge

distribution that will exactly solve the above problem, However, an approximate method exists

which should serve adequately In many cases of practical interest. Suppose that we have an

infinite plane surface with a uniform surface charge density p,,,; which is embedded In an

Infinite uniform dielectric medirhm -with a dielectric constant a.; then, by Gauss' law we have

that the electric field A• in the medium is given by the relation

~PU1 S- s ,(5.1)

whore A is the normal unit vector outward from the plane. If the plane suffers a local deforma.

tion of small aspect, then this should still be a reasonably good approximation for the electric
field at distances from the surface small compared to the lateral extent of the deformation.

Similarly, if the surface charge Is allowed to vary gradually from one point to another

on the surface, then for our purposes the approximation should remain serviceable for distances

from the surface small with respect to the scale of variation; such a charge variation would pro-

duce a horizontal electric field component close to the surface, but the local field indicated by

(5.1) should nevertheless be a falrly good estimate of the normal component of the field at

small distances from the surface, The seawater medium with which we are in practice

4
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concerned is not a dielectric material, but, as it is only weakly conducting and in principle the

distribution of free charges in the prcblem is maintained in a steady state by outside sources of

EMF (upper atmospheric sources, etc.), it may be considered to be a dielectric material for the

purposes of these calculations. The effective dielectric constant of this medium is difficult to

estimate, and it is fortunate.that its value has no effect On the end results of the calculations. In

calculations deriving the surface chi'ae p from the field o within a medium or dielectric con-

stant a It is the ratio (p/e) that is solved for, and it is this ratio that is used in turn to compute

Sthe correction field to f0; provided that the surface charge is used only as an intermediate cal-

culatlonal device, rather than being given any physical significance, any value of e will do pro-

vided that it Is consistently used. A value of 90 i0, roughly the value for distilled water ai 0"c,

would be a good choice if one wishes p to hFve a physically reasonable range of values,

The recommended approximation is, then, given by

p - 28, o(5.2)

where A is the normal unit vector directed outward from the charged surface at a given point,

2*0 is the uncorrected field vector at that point, and t, Is the chosen value for the effective

dielectric constant of the seawater, For calculation, of the correction field f, one might sweep

the surface charge distribution into a number of small piles and use the formula

Rio) 9 (5.3)

where N is the number of piles, q, Is the accumulated charge in each pile, and I Is the position

of each pile. If the surface charge distribution derived from (5.2) is divided sufficiently finely,

the resultant error in the field calculations will be smaller than the error of approximation in

using (5.2) to get the surface charge distribution. In any case,, It Is strongly advised to use a

streamline tracing program such as is described in section 2 to verify that the above procedure

has given an answer acceptable for one's purposes. In the event that the approKirnate solution

falls short of adequacy, it may still usefully serve as a starting point for a charge-redistributing

variation program leading to a more exact solution. The electric current density distribution

within the ocean Is given by

or Y-( 0 R d (SA4)

where a- is the electrical conductivity distribution within the or, ean

-- i~i .
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6. Shallow features on the ocean floor

6.1 Basic mathematics

The- shape of any reasonably smooth bottom feature can be described by the superposi-

tion of terms of the form

-aexp(Y a ) , (6.1)

* -k (cos9,shin,O) ,k>0 (6.2)

whera i Is altitude relative to the mean depth or the ocean floor, and the magnetic effects of a
single such term mnay be computed by'means of a variation of the mathomnaties developed In

section 3 of chapter 1 for finding the magnetic effects of a shallow wave on the ocean~ suarface,

Pi-ovided that the relatlkit between bottom profile ih-d associated magnetic effect is linear, the

magnetk. field due to a bottom -profile given by the superposition or a number of ternms of the

form (6.1) is just the superposition of the fields calculated for the individual terms. It will be
seer. that, for this linearity to be safely assumed, the amplitude of each term must be somewhat
smaller than Its wavelength and somewhat smaller thnn the depth of the ocean, and the electri-

cal conductivity of the seawateir at the ocean bottom must be essentially constant over the
torm's. amplitude range.

7hU oceax. bottom feature'problem differs from the surface wave problem discussed In
section 3 of chapter 1 In'that the scale of the -induced electrical current density distribution per-

turbations could reasonably be a significant fraction of the depth of the ocean, and the electrical

conductivity of the ocean cannot automatically be co~nside red uniform throughout the ureon,

Keeping this in mind In the adaptation of the surface wr~ve mathematics to the present prob-

lain, we write for the electrical current dentity distribution7

(6.3)

vo `6.4)

the divergence condition

V-9 - 0 (6.3)

then gives us fronm (6.4)

V20-0to.6)

We assume an electric field Lro, induezri by sources o'f EMIT outside of the ocecin, tha~t wc-,,d be



48

the field within the ocean in the absence of bottom features; it is taken to be horizontal and

uniform within the ocean, with the form

F(6.7)

We then have for the general solution to (6.6)

*-fox + A up(I..) +B ep(lk ) (6.8)

S- k (cosO,sInG,-i) (6.9)

*.2 - k (cosOsinB,i) , (6.10)

i and hence

E4 +iI A ev (#r4) + C i B p (l )I (6.11)

The term in A represents a field component that grows exponentially upward, and the term in B

represqnts a component that damps exponentially upward; if the ocean were assumed to be

infinitely deep, then the term in'A would vanish.

Let us define the vertical coordinate so that the mean level of the ocean floor Is at z-0

and the level of the ocean surface Is at 2u-d. The boundary condition -at the surface, that there

be no electrical current flow through the level surface, is

7,- 0 at z-d , (6.12)

which Implies through (6.3) that

1.1 - 0 at z-d ; (6,13)

frown this conditic and (6.11), we have that

A -B exp (-2kd) , (6.14)

The corresponohig boundary condition at the bottom is

Pr . ot (-X(Y), (6.15)

where r is a vector normal to the ocean Iloor at z=:((x ,y) as deftied by (6.1). Once again.

from (6.3) we halve

S. . .... ,-., i , .. • " r " l m N P' l~ql 'F'-i lq~[ I [[! I ! I~llI r ii • iz I I 'l i .
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t-7 - at z-C (6.17)

using (6.11) for 9, assuming that

and discarding termns quadratic or higher in'(ka), we get from (6.17)

B -a BOX coN (6.19)

where

I 1- exp (2/I) (.0

We then have from (6.11) for the electric field within the ocean subject to (6. 18)

i~.r-Eo {(1 + a k* co-V typ (-.'2kd) exp (I*r)3 + a Ci cosoexp (UW2.r)) (6.21)

In the courie of this derivation one finds that, in order for the discarding of the terms hig. her

than linear in (ka) to be valid, one must also assume that dJ > > In particular, if a > Vhd
then the result (6.19) becomes grossly invalid,

Fromeqiiatons(2. 1) and (6.3) we have for the magnetic field A Vi) at the position x

ova)&C d cr(6.22)

where the electrical conductivity of the seewater is assumed not to vary laterally. For purpocse

of calculation we find it expedient to suparate (6.22) Into two parlts;

4.1 io Ir.tzu VD)(6.23)

i t r (r) X(6.24)

1r Q yj f.za (6.25)

If we expand the integrtind of (6,24)in powers of z about z-0, we find that only the term con-

stant with respect to z contributes . to Ws (.ZO) less than quadratically In powe~rs oil (ka). Acc~ord-
Ingly, retaining only this term and letting arn be the value of (r W) at z-0, we have for'(6.24)

to first order

,.p'Eo d (O'ZO&(--yo)1
A~s*xO) T -d f Y ;)Y. 0 v ý(XY) .(6.26)
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Note that retaining only terms up to first order in (kO requires us to disregard the' effects of

'Ivariation of 0r(z) over the amplitude range of the bottom feature. Making then the substitu-

tions

u -(x-Xo) cosP + (yý-y 0) sino (6.27)

v -(y--yi 0) cosO. - (x-xo) sinG (6.28)

u0 - XcO SO+ YOSine (6.29)

we get from (6.26)

AovB~EOa -- - v(0,zO,u sire 4+ v coso)(60
W)- 4r exp Qku0) j du f d (u2+v2+zDVF3  exp(Iu) (.0

from which integration over v iives, by use of symmetry and equation (3.30) of chapter 1,

_____ 7~ (0,zo,u sino)JAWEdexp (Ike*) du exp Gku) (6.31)

This Integral yields easily to contour integration, giving for zO> 0 (the only region of practical

Interest)

fiS.(WO*) 1h- rjE~ exp.(1kuO) exp(-/co) (0,1,1 sinO) .(6.32)

We find it convenient also to further separate A~into the parts

1(i)-~~~ I~(~. B V() + B 2(i), 6.3

where ReJ is concerned with the unilform component of (6.21), BYPI with the perturbation

term in Elj, and BPP2 with the perturbation term in Y. B has already been evaluated in sec-

tion 2 of chapter 1. For Br I we havio

____ I &(6.34)
eVP a4ir ep -2 kd) fdxfdy

D-coscosGnP si1Gx(6.35)

D - Pcoso - sinO , (6.36)

*~~N IN 40%~ .9 U 9 ')
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this becomes

4,n exp (-2kd) e.p (ikuo) f du f dv d (6.37)

X a.(z) expOku exp(kz) U - i(z-ZO)} - V

Integration over v then gives

2wk exp (-2kd) CXp (Ikuo) P (6.38)

X d (z)eyp(Ik&0)exp(kz)0. u + 14(-:0)

which yieldsreadily to contour integration over u to give

BW.,(xo) - -'AoEua k X co's expv (kuo) gxp (-/zo) 0 (6.39)

x I or(z) exp{-2k(d-z)) d
0

For BV2 we have

B• -2 eoEoa k X cos r.d 'f9 (640)

:--...--

(cosG)sif6)4xo)
X '(z.) exp~rik-30• exp(--kz) (CSiSMO_,1• X W--

which by a similar processreduces to

BW.(o) - •oEoa k X cos exp (ikuo) exp (-kzo) 0 (6.41)

x o'() exp{-2k(z-Zo)) dz

For the special ca3e in which the electrical conductivity of' the seawater has the con-

stant value ao- throughout the ocean, over the depth range 0<z0<d the expressions (6.39) and

(6,41) for B't and B4p2 respectively become

B~p(vo)"- j-ooaOEoa X cosO exp (-2kd) exp (Ikuo) sinh (kzo) P (6.42)

BRp 2(xo) - p, 0oE 0a X cos8 exp (-kd) exp (Ikuo) siinh(k (d-zo)) , (6.43)

I .• . .. . .,.O . ' •'•.,•,,••,,••.'' € •••r', ,1 •".•,. , ' . •, ,,'*" .•" . . . . .= •' • '-.,.? • . • .•. . .•, •
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"and over the depth range zo> d they become

i B? (IO)"-hscae oEoa cos0 exp(0ku0) exp (-kzo) 0 (6.44)

BeP2(x)-O 0 (6,45)

For zn> d, the total fBeId minus the unifornm component Bv, derived by adding together (6.32)

and (6.44), is given for a single term by

x 0o) - Ih )AOoEoa exp(ikuo) exp(-ko) 3sin (cosO,sno,i). (6.46)

*11
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6.2 Application to two-dimensional bottom features

If we represent a two-dimensional bottom feature in the form

C (Uo) - a (k) exp (kuo) dk ,(6.47)

where the a(k) for positive values of k aw the coefficients for terms for which 7 0 <

and the a(k) for negative values or k are the coefficients for terms for which 0 is in the oppo-

site direction, we then ha,'• for As for Zo>0

S(x)f (k)exp (ikuo)+a (-k)exp (-,cu0)) exp (-kxo) dk (6.48)

00

+ I sit'l I [a (k)exp kuo)-a (-k)exp (-ikuo)Iexp (-)ao) dk .

For O<d<za we have for Bpp, and Bin2

e VO) - -LoroEo cosO (-sinG,cose,0) f (a (k)evp (Ikuo)+a (-k)exp (-Ikuo)) (6.49)

exp (-2kd)sinh (kzo)
S X1-exp(-2kd) -dk

B• 2(Vo) - trw7Eoo cosO (-slnG,cosG,O) fJ (a (k)exp (Ikuo)--a (-k)exp (-Hkuo)} (6.50)
0

X exp (-kd)sinh(k (d-zo))

I-exp(-2kd)

and for zo>d we have for ,

Bfp (o) - B_,I(xo) - -"V•/croE0 cos# (-sinO,cosG,O) f (6.51)

x (a(k)exp (Ikuo)+a (-k)exp (-kuo)) exp (-k-zo) dk

The bottom features to which this method is most easily applied ate low ridgcs and

shallow trenches, which may be roughly approximated by a Gaussian profile of thf. form

C(u0) -A exp -W-. (6,52)

.t
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where A is poMsilive for a ridge and. negative for a trough, and a is the effective half-width of

the feature (%a figure 2.2), to properly -satisfy the condition (6.18), a should be somewhat

larger than A. If (6.52) Is erpressed in the form (6.47), then we have for a(k)

a (k) i ex ... . (6.53)

When expressinn (6.46) is adapted to bottom features expressed in the form (6.47), 't becomes

fr*i ")'h- jsor0E ' (slnG (cosOsin0,U) 11(ou) - sing i 12(io,a)} (6.54)

-1(roa) A-' f (a (k)exp (Akuo) + a(-k)exp (-Ikuo)) exp (-kzo) dk (6.55)
0

J2W•Ox ) - I A7 f (a (k)exp (Ikuo) - a (-k)exp (-Ikuo)) exp (-Iko) dk A (6.56)
0

Substitution of (6.53) gives for l1 and 12

2a.
2 -zk cos (ku) dk (6.57)

:(XoU)- 'm ~f exp[ c2k2 zok sin (kuo) dk . (6.58)

These integrals me dealt with as Fourier cosine and sine transform$ in Erde'lyi et al., 1954, v. I

(sec. 1.4, eq. 16, p. 15 and sec. 2.4, eq. 27, p. 74), and have the solutions

it (.'0),- 'A (f+ •,a) + fV, 0.,a)) (6.59)

12(x) -1/21 f+ oA)) "f-(4o4)) , (6.60)

where

f+ e xp (s. ) erfc (s .) (6.61)

.Zo0 + iL'o +>0 zo>d 
(6.62)

f.-(x x) - exl(s2 ) erfc (s_) (6,63)
Zo - iUo

•_. • ., >0 , zoý>d ,(6.64)

with the function erf¢ (,x) b,,kng defined such that on the positive real axis

taýVv~ý MZsYt~
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I0<

1/

FIGURE 2.2

Ilustration of the parameters describing a Gaussian ridge-or trough on the ocean floor, as used

'in equation (6.52). A is the ridge height (positive for a ridge,.negative for a trough), a is the

half-width or the ridge, Uo Is the perpendicular distance from the ridge axis, and • is the vertical

i.oordinate of the ridge surface aw a finction of u 0 .
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erfc 2x) fexp(-2) dt (6.65)

Note that f+ and f- are complex conjugates'of each other, and that therefore both (6.59) and
(6.60) will always be real-valued. The. Integrals It and 12 are plotted in figure 2.3 for the special

cases of (a/to) equal to 0.2, 0.4, and 0.8,'for values of (uo/a) ranging from 0,0 to 6.0;+11 is

symmetric with respect to um, and 12 ,Is antisymmetric with respect to u0. Expressions found

useful for the evaluation 'of (6.61) and (6C63) were the formulas 7.1.5 on page 297 of

Abramowitz and Stegun and 7.1.23 on page 298 of same, the former. being appropriate for small

absolute values of the argument and the latter for large values; it was found that If 10 terms

were retained in. the latter expansion. then there was a region, of overlap of satisfactory size In

the z-,lane where neither of the corresponding expressions for exp(r 2)erfc(z) diverged and

both gave the same value to seyeral significant places.

As a practical example, we consider the case of a submarine canyon on the continental

shelf. We assume an electrical conductivity for the ocean of 3.3 S/m, and as a calculational
convenience we consider the special case In which the feature is parallel to the Inducing EMF

(such a feature running perpendicular to. the inducing EMF yields a zero anomalous magnetic

field above the ocean surface, although an anomalous field Is present below the surface). Also,

In order to satisfy the approximations made In deriving this method, the feature must be some-

what broader than it' is deep and somewhat less in vertical dimension than the depth of the
ocean. We take the value of the Inducing EMF to be 1,0 IA V/m, a reasonable value for an

electromagnetically. quiet day. The submarine canyon extends to"a depth 20 meters below an

otherwise level ocean floor at a depth of 100 meters beneath the ocean surface, and has a Gaus-
sian shape with a standard deviation of 80 meters. The anomalous magnetic field due to the

undersea canyon Is plotted in figure 2.4, normalized against the spatially uniform magnetic field

calculated from equation (2.5) for such an ocean and such an inducing 'EMF in the absence of

any bottom feature; this field is - 2.07x 10o-°IO tesla, Note that while the anomalous field is, at

its strongest, no more than about a tenth the Strength of the uniform field upon which It is

superposed, the spatial gradient properties of the anomalous field should make it easy to distin.

guish from the uniform background.

IV



4, 57

'IL

K G

t.4

TheI/ i 11 0 s... .i - ....

(/

te. 4 o-w do

l e i

Iti

,4,

4 'i
the ifretrdewits oatosae - ig af-itd- et focaad



'2 58

FIGURE 2.4

The anomalous magn~etic field components By and B, induced, at the sea surface over a subma-

rine canyon incised parallel to the x-axis into a level seafloor, by ant electric field running paral-

lel to the axis of the canyon, as given by equation (6.53), The field components are normalized

against the reference By field -which would be induced by the pri Mary electric field In the

absence of the canyon, with a completely level -seafloor. For this example the ratio of a, the

canyon half-width,- to d, the depth on the level part of the ocean floor, is a/d n~0.8, and the

ratio of canyon depth to water depth is 0.2. The distance y is the lateral distance from the axis

of the canyon.

°•* *~~* 1~~j.P
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6.3 Applicdion to three-dimensional bottomi features
SLet us now suppose-that we have a three-dimensional bottom feature whose shape is

given by the function. (x y), which we write as a Fourier transform;

(Xy)- f dk, f dky a (6.66)

If the direction of positive x is chosen to be parallel to the uniform current-inducing electric
field within the ocean., then we can write

Sk,- €• •-,si ,k2='kJ. k (6.67).

where k is a positive real scalar, which will transform the'Cartesian coordinate frame in which
(6.66) Is expressed into the cylindrical coordinate system in which (6,46) is expressed. Equa-
tion (6.46) is the expression for the anomalous magnetic field 8r (.O0) above the ocean surface
due to a bottom feature given, in Cartesian coordinates, by a exp(I (kxo+kyYo)); as (6.66) is a
superposition of such terms, we thus have for IA W) the anomalous field above the ocean sur-
face due to the bottom feature 4 ( ,y)

J ) ' M dk A dky A (k•.k,) exp{I(k.,x+kyy)) exp(-kz) (6.68)

or, in cylindrical coordinates,

uIAA - A- k dk dO a (k coso,k sino) (6.69)

X exp(Ik,(V coso + y sine)) e.V(--kz) sine(coo,sin#,1)

In cases where C (xy) is cylindrically symmetric, a (k cosO,k sino). is a function of k
only, and judicious use of the -identity

2v Jo(kp)-1' dO exp(i (x cosO -- y snO)) , p2  x+Y 2  (6.70)

allows (6.69) to be written in the form

VM
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CA -r,'I O. k"kT i kx- ' T y2 "Tk y (6.71)

x Jo(kp) d ;

from here, use of the standard Bessne function recurrence relations gives

~Of~-rooo~o -a (k)oq-z [.d(p ~ (kp) - LJI(kpX6,.72)
o 1p "p kp S. 1 sI(kp) •k

If the bottom feature has the Gaussion form

then we have for Its Fouder transform

a( dXV1 - 2+ 2r e a I k) (6,74)

and (6.72) becomes

-$ 
i

which with the substitution

v-k p (6,76)

turns into

* M~AO~r a2  V
AA2 -. I3cUP,) , )2 10,00 i1 ),C) , 0A) , (6.77)

;p2 L -2

where

Iict fn)- exp a 2 2Jexp - v J,(v) dv , (6.78)

-.
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mP ~2 ,2 P

anid

13 Ma VI, ep[ V MJY() dy (6,80)

These Iralerals may be straightforwardly evaluated In the twQ regimes p «a C and

p >> u. In the first, case, the Gaussian in the integrands has gone to virtually zero while V. Is

still very small; accordingly, If the Bessel functions In the lntegrartds are expressed &1, power

series expansions, only a small -number of terms from each expansion are required to ado-
quately approximate the values of the Integrals, The basic integral for thesie calculations Is

So CV~a) sV11exp 2L V21 exp' L 1 (6.81)
* P~ .2 J vd

(Erde'Iyl et al., 19S41, v, 1, sec. 4.5, eq. 24, p. 146), where n Is a nonnegative Integer and the

D61 (x) are parabolic cylinder functions (see Erde lyl et al., 1955, Y. 2, sec. 8~ p, I15), and the

appropriAte power sqas,rq~I~,panslon for Bessel function's of Integer order Is

f. (6.82)

Accordingly, fromn the integral representations 11, 12, and 13 we have

1:- S-+(,0)(.84)

4Ah... 22k I (k* 1)' (. (A-+44% ~
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(ibid., sec. 8.3, eq. 14, p. 119), and the functions

D-I(•x) - V exp erfc( ) (6.87)

and

ad D-2( x) -expI- Vj 1 V-MM exPI1 f(T }(.8

where erfc (0), the complementary error function', is as given in equation (6.65) of the last sec-

tion, Expressions (6.87)'and (6.88) were found by comparison of' (6.81) for the cases h--0 and

n-1 with the equivalent expressions in Gr'obner (sec. 312, eqs. 10(a) and 10(b), p. 57).

From (6.81) and (6.86) we have the recurrence relation
'2M (9, OX~)-_ (n- 1) (P--)2$SN.2(,o4P)-- (a•'2),4'-4,o4,) (6.89)

and from (6.81) and (6.87) and (6.88) respectively we have
II

IOOXOXOP Z.l ~jZ1 (6.90)

and

$1(aMa ( x 6.91)

P, I

In evaluating the complementary error function, the approximate expression (7.1.26) on page

299 of Abramowitz and Stegun, good to high precision anywhere along the positive real axis,

was found particularly useful.

In the limit of p-- 0 It is seen that 11, 12, and 13 all vanish-, however, in the magnetic

field expression (6.77) which uses these values p appears in denominators taken to various

powers, and It turns out that this expressinn does not vanish in this limit. Referring to the

'PIN
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expansions (6.83), (6.84), and (6,85), we insert them into (6,77) and discard any resulting

terms in positive powers of p, to get

A•°°°-•SAP4,a), -'2 S3(PZ4)- SI('v), (6.92P-0,_ o•. 4 4 ,p•

where the indicated powers of p in the denominators cancel the p.dependences of the accom-

panying 4 (see (6.81)); since x and y will vanish with p, this reduces further to

14CA1 Ce) -AjAOcwOBO f~ / Aien~ rc-- (6.93)0-.0 4 " -j 2 ia xP z I

At the other extreme, where p >> a, the value of the Gaussian is still close to unity

by the time that Y is large enough to make the Bessel functions for practical purposes vanish; in

this case we expand the Gaussian in a power series about zero, ind Integrate termwise, The

basic intelgal is

4. ~~~V11ex4; VJ4.(Y ) dv (6.94)

which for n and in' both nonnegative integers and n > in is

1, W) ,+1 ,)PMI (6.95)

p.-8 1+ 2 (6.96)

P 2

(Erdcieya at.al, 1954, v, 2, sac, 8.6, eq. 6, p. 29'and Erde'lyl et al., 1955, v. 1, sec, 3A4, eq, 17,

p.144), where the P'(x) are Legendre functions of integer degree n and Integer order in (ibid.,

sec. 3A4, p. 143). The Gaussian series expansion is

r -o 21 nl I " p (6.97)

giving for I, 12i, and Ij

110,z P) E to. (-1, a L 2A. 1~ (6,98) i

k-0 2' (k 1) p ('9 ")
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. •L•,+II(,Z) ,(6.99)

and

-k-O -( IP)
12k(k!) I '2k L2k+1,2(P~Z) (6.100)

Expressions for L0,1 and- L1,2 are required by (6.98) and (6.100) respectively, but are not given

by (6.95); from integral tables, these are

L0,o(p,) "- I - (6.101)

p

(Erde'lyi et al*, 1954, v, 2, sec. 8.4, eq. 6,'p. 19) and

S( 2 6102)

(Erderlyl et al., 1954, v. 1, sec. 4.14, eq. 2, p. 182), where,0 is as given by (6.96).

Useful recurrence relations and bootstrap functions for computing the Legendre func-

tions required by (6,95) are

(n-m+ 1) P,+t W - (2n+ 1)x P•(x) - (a+M) P-t I W (6,103)

and

(1-x2)VIPp+I(x)- (n-m)x PN(x) - (n+m)P.1t (x) (6.104)

(Erde'lyi at al., 1955, v, 1, sec, 3,8, eqs. 12 and 17, p. 161), and

P (x)- 1 (6.105)

and

P (x) -x (6.106)

(Abramowitz and Stegun, eqs, 8.4,1 and 8.4.3, p. 333). Note that Pg'(x)=-0 for m>n. Addi-

tional useful functions are

PB(x)- -(1-x 2 )'A , (6.107)

Pf• Wx -= t (3X2_ 1) ,(6,108)

P (x) - -3x (0-x 2)'A , (6.109)

-¶ * A -- i. . ... *,-vi* - *(........ ~ ~ '
. .. .... . ..
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and

P x)- 3 (1-x 2) (6.110)

A Reference to (6.95), (6.103), and (6.104) gives the recurrence'relations for L,,,. (p,:)

_ 2 L.,j(oz) - (2n-1) (z/p)L.-., 1(pz) - n(n-2)L, 2, 1  (6,111)

and

LI,2 (PZ) (n+1)g-.t,1(pz) - (z/p)L,,,(pz) (6.112)

and some useful bootstrap functions, from (6.95) and the previously listed Legendre functions,

are

L ,1(p,) - (6.113)

and

'iL2,1 z)- ._3 z (6.114)
_Ps '

note that the recurrenco relations (6,111) and (6,112) are invalid with the use of bootstrap

functions for which m>n, making it improper to use either (6.101) or (6.102) to start them

off.

In the limit of p- 0 0 , the integrals (6.78), (6.79), and (6.80) reduce to

!1 J(Y.0 )dy- , (6,115)

12- f vJt(v)dv 1 (6.116)

and

Ifv J2(0 dv - 2 ;(6.117)

these integrals are special cases of Lo,, LI,, and L1,2, and their values were derived from the

appropriate expressions in the text (expressions (6.101), (6.113), and (6.102) respectively) by

taking the appropriate limits. Substitution of these values into (6.77) gives

" liraf (V) I (6.118)
Pt.- ýP p 2 p 2 p

MX1

,• ',,,,•',.• . € ,. • ,. "o~~cc• •',m ','L ',•_•t,,.,\. .•'•.'..•,k,'•, ,.,.• .. ,,• ,' •' •... '• •'.'. " , ': ". " '.•. .pr
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Computation of the elements of the tensor gradient of the anomalous magnetic field is

eaxpedited by the fact that spatial derivatives of the members of the sets of the S, and the L,,,

are. also members of tbe respectivt, sets; from the integral expressions (6.81) and (6.94) we

have

(z-o ) 4S+j (p,,Oz)) (6.121)

P~ ±
'S (p,zac)- L,,iozp) ,(610

and (6.122)

._:L4 ,,f (o ,z a)..- -n 1 9,+,(p ,z a) .(6.122)

Modification of the routines used to calculate I1, 12, and 13 for the calculation of their spatial

derivatives should be fairly straightforward.

A prattical problem in the use of the recul •,t relations (6,89) and (6.111) in the

calculation of 11, 12, and 13 is that for many choices of p, z, and a the series diverge,

apparently ab a result of numerical instability; where this occurred, investigation of the- rroblcm
showed that successive terms in the expansions for 11 12, and 1,, first decreased in magnitude

to values very small in comparison to the magnitude of the first term in the series, and then

increased withoui bound. It was found that if the expansions were truncated just before the

point of diverg.tnce was reached,. the agreement between the equivalent series hi the S. and the

L,,, in their sireas of mutual validity was good to several significant placeS, suggesting that this

procedure is a workable solution to the divergence problem. However, in many casea it will be

desirable to get at least a rough estimrate of the number of terms actually required for a result

of a given level of accuracy, either to avoid, computing unnecessary terms or to determine

whether or not a serizs expansion is -nvalid due to divergence before the requisite number is

reached. Both methods are based on the series expansion in ascending powers of its argaunent

of a factor in the integrand of an integral, the justificatilog being that another factor in the

integrand will have effectively vanished before the argument of the expanded function becomes

large enough to invalidate its series expanson. To produce a serieR truncation error estimate

for a given choice of p, z, and a, one first truncates the integration at a selected citoff point,

and estimates the error introduced by disregarding the remainder of the integral; then, one cal-

culates the difference at this cutoff point betweeri the value of the factor t(N be expanded and

- - ; j,.a'a,, -a -" •a l * I~ . .' , ,*i l i I" .*.. . N SK'" _,i_ _~..=_ -. .. '.... .
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the value of its expansion, truncated after the specified number of terms. A reasonably reliable

upper limit on the error produced by the series trunatiori may be arrived at by making the con-
_•.!•servative assumption that the percentage discrepancy between the factor value and the value of

I lts expansion Is the softie over the entire range of integration from zero up to the cutoff point,
•:;• and the total error 'is calculated by multiplying this percentage -error by the. -value of the trun-

"cated Integral based on the truncated series expansion and adding the result to the estimated

error from the truncation of the integral. This process involves some tradeuff decisions, in that

selecting a greater cutoff point will decrease the integration truncation error but increase the

seres truncation error unless a larger number of terms Is Used in the expansion .

As an example, we consider the cae of a Gaussian hill 20 meters high and of width*

such that a 80 meters, rising from an otherwise level ocean floor 100 meters below the sur-

face. The magnetic field is computed at the points of a 5x 5 horizontal grid at the ocean surface,

centered directly over the peak of the hill and with a grid spacing of 160 meters, with faces'

parallel to the direction of the inducin; EMF. The waier -depth is not untypical or a continental

shelf, and underwater features such as a reef, a dune, or a highly eroded submerged island

might have -dimensions on the order of this Gaussian hill. A uniform inducing electric field of

1.0 A V/m in the Yc direction is assumed, and the ocean's electrical conductivity is taken 'to be a

uniform 3.3 S/m. Note that most of the points on the grid are in the intermediate region

between p << a and p >> a; in this region both of the series expansion schemes given above

should be usable, and in fact -for this problem there was a narrow range of values of p where

they gave the same values for 11, 12, and 13 to several significant places. However, difficulties

encountered suggest that, am a safety precaution, for computations with any given combination

of t and z one should compare the outputs of th., two algorithms over the range of p with

which one is concerned, i-, order to establish whether there is in fact a range of cqi•ivalent out-

put, and, If so, exactly where it is. The results ot the calculations are presented in table 2.3,

The scaling rules discussed toward the end of section 3 may be used with these results

to deriVe the magnetic values at the ocean surface for any situation where the relative dimen-

sions of ocean depth, hill height, hill width, and grid spacing are the same as in this example:

Also, the field values are directly proportional to both the strength of the inducing EMFan'i

the electrical conductivity of the seawater. According to equation (6.77), the field values are

directly proportional to the height of the hill, but it should be recalled that this equation loses

its validity if the height of the hill approaches either half of the ocean depth or the width of the

hill.

S.W
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x -320.0 m .- 16.Om 0.0m 160.0 m 320.0 m

y- 320.0 m B, 0.850 0.926 0.000 -0.926 -0.850
B 0.153 -0,377 -0.851 -0.377 0.153

-0.984 -1.732 -2.357 -1.732 -. 884

y- 160,0m A& 0.926 1.548 0.000 -1.548 -0.926
y, 1.011 :1,205 1.044 1.205 1.011
S .0.866 .2,666 -4.720 -2.666 -0.866

y-0.Om BJ .0.000 0.000 0.000 0.000 0.000
B, . 1.748 31788 9.569 3.788 1.748
B o 0.000o 0000 0000 0.000 ooo)

Y--160.0m B: -0.926 -1.548 0.000. 1.548 0.926
By 1.011 1.205 1.044 1.205 1.011

0.866 2.666 4.720 2.666 0.866

-y--320.0m B,, -0.850 -0.926 0,009 0.926 0.850
B, 0.153 -0.377 -0.851 -0.377 0.153
B, 0.884 1.732 2.357 1.732 0.884

TABLE .2.3

Field values at the ocean surface over* a submerged Gaussian hill as described in the text on

page 67. The field values are in units of 10=12 tesla, and the origin of the coordinate system for

position on the surface is on the vectical axis of symmetry o1 the hill. In the absence of the hill

the unifotm field at and above the surface would be AV--2.07X 1 Or°.' testa.

- w i
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7. !ntetractl with t0," Earth's magnetic field of seawater current flow

An electric current will be generted by the flow of seawater through the Earth's niag-

netic field, auid this elec.rval c'jrrent Will in turn generate a magnu.tip, field of its own. As well.

as the magnetic anouialies associated with the flow of tides and steady ocean currents and with

turbualent water motloil,, Which are ouiside' of the scope of this study, there Will also be.

anomalles o. ietd with the diversion of water flow over tho. &.eoan bottom by topographical
features ok the ocean floor. Unfortunately, the flow patterns of real, viscous water about even

very simple shaps ate dMficult to model, and the subject has In general not been well studied-,

accoidingly. even though this effect Is probably aignificant In comparison with the others dis-.
cusod In this report, It, cannot be covered here because the available data Is insufficient even to

estimate orders of mneprltude. For some exsmples see Cox and Sandstrom, 1962, and Osborne,

190o.

00

'I

'A.



Chapter 11

Mkanetic Anomalies Induced by Fronts within the Ocean

1. Introducimn

Ocanic fronts are regions where dissimilar water types abut one another, and they can

exist as stable conditions because the electrical conductivity of seawater Increases both with

increasing temperature and Increasig, salinity, whereas the density of seawater increases with

"increasing salinity but decreaing temperature' As a result of this, two bodies of water can lie

adjoining each other without a density contrast but with appreciable contrast in electrical con-

ductivity, and fronts with their main contrast in the vertical nmay have density as well as con-

ductivity jumps.' The causes of temperature and salinity variations lie ultimately in air-sea

processes such as procipitition, evaporation, insolation., .nd long wave back radiation, but the

actual distribution of water types within .the otean results from dynamic processes which tran-

sport regions of water that have been subjected to these influences in different propoitions.

Some of the more common of these dynamical processes derive from. gravity waves. In

this instance, we regard the redistribution of water types In ihese so-called internal waves as a

form of 'frantar creation- these fronts have time scales in the range from the Inertial period to

the Vaisala period (Eckart, 190). Other processes - currents and turbulence - can lead to

longer time scales. Internal waves are ubiquitous In the ocean but have local intensification in

shallow water (Gordon, 1977). Since the vertical struvture of the ocean is -always one of

Increasing density with depth (usually caused by decreasing temperature), internal wave fronts

are always present. The more persistent fronts where density remains almost constant demand

the close proximity of contrasting salinity/temperature water types.

This chapter deals with the calculation of the magnetic anomalies associated with the

electrical conductivity properties of oceanic fronts. Section 2 uses a perturbation approach to

derive equations describing the alteration of the electric field within the ocean by the presence

of a front, and discusses the calculation of the magnetic effects of the front by use of the solu-

tions to these equations; Section 3 deals with solutions to the electric field equations for a spe-

cial case of particular interest, section 4 illustrates the practical use of the work of section 3,

and section 5 gives two different methods for a general solution for the electric fields in the

perturbation limit, one being the more convenient for analysis of Fourier transformed data and

the other being the more suitable for the study of localized fronts in real space.

70
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2. Basil eqations

2.1 The oeanic electric field

We start by supposing that the front exists-as a steady.state condition, making the
magnetic field associated with It constant in time. From MaXwell's equations we then have for

. the elqctori field within the ocean

V, "* (2.1)

which Implies that r may be expressed as the gradient of some scalar function •;

E•-v• . (2.2)..

For 7 the electrical current density distribution within the ocean we have

(2.3)

where o is the electrical conductivity distribution of the seawater, and

V.7- 0 , (2.4)

another consequence of the steady state assumption. Combining (2.2), (2.3), and (2.4) givns

V (Cv)-o . , (2.5)

or

r VO. + (a). (VO) - 0. (2,6)

For fronts In the ocean, the variations from the mean electrical conductivity of the frontal

region are seldom more than a few percent of the mean conductivity, suggesting the use of per-
turbation methods in solving (2.6). Accordingly, we write or, which we may take as a given, in
the form

SW - roO(Z) +, a 'I•) (2.7)

and 40 in the form

(2.8)

where a is a perturbation parameter that will eventually be set to unity, and (TI is a small per-
turbation on the mean conductivity o-o, which is taken for mathematical convenience to be hor-

izontally stratified, Substitution of (2.7) and (2,8) into (2.6) gives
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.o0V2 o + (V7,o)'(V17 ) (2.9)

+ 4 (o0 V2, 1 + &1 V 2,o + (VOo).(V.j) + (V)'(V 4 0o))

+ 42 (,a0 V102 + IVIV0I + (VM o)'(V- 2) + (Vo.i)(V0))
ONO

,. , i.+.,.,-0. .

Requiring that (2.9) hold for all choices of the value of e yields

.... Vo+;0•o).(V~o) - 0 , (2.10)

Cro V202 + (Voo)'(7•2) + art V2 •1 + (V'o.0(740) - 0 , (2.12)
and, for higher orders,

oVAOR + (Vaoo)(Von) + a, V2#~ Ma ('I)(V 1.) -0 .(2.13)

Making the definition

) 1 d.. (2.14)

gives from thiis

V2o +f(z)2.-V~o-o , (2.15)

V 2 ~ 1 f~z)*V~ 1p 1 ~)(2.16)

where

PIO•) ) f(z) I - Vao } )) V. o
S: :- . .. O Wo Z) (2.17)

20 v +(•f) W .IV 2 - pP2 0) (2.18)

where

P2) Wo. f)(W) - (•O)} Vol• o'0. 00)
-oo~.(z)!-oc) pto(Z) ') (2.19).

WrOWz qo(z)

and

V_ _ _+_ -f _(z) !. ' -__ _(3e) (2.2'0)
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___ ___ __ ___ ___ __ -A- -) (2.21)

Setting a to 1, we have

WW (2.22)

and

00) 0(w + 00) 020(2.23)

*AS 1I021 will be smaller than I10l by something 'on thle order of magnitude of the ratio of
* (max tq. 11) to Itrol, it, will generally be practical to ignore all tefts beyond 1, 1 (2.23).

As an important special case, we. suppose that

B0 Wmox ,(2.24)

which is seen to be a valid solution -to (2.1$); then, since O-4'o if a I Is uniformly equal to

zero, In the absence of a front the electric field rthroughout the ocean 1s

which we masy take to be Induced by some outside. source of EME. If a1 is nonzero, then we

* have for 1 0 from (2.16) and (2.17)

V; (2+f 10 .26)

Pi 00(Z Ox (,7

The choice (2.24) for 00' Is appropriate for virtually all cases of practidal -interest dealing wlih

* fronts near the surface of an ocean.

'N -A, V 4
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2.2 The Fourder transformed magnetic field

The Biot-Savart expression for the magnetic -field A due to a steady state electrical

current density field 7 is

Iwo W--) d ; (2.28)

if we define

wenoeha (2.28) (2.29)

we note that (2,8) becomes a convolution Integral of the form

)f. 70C) X P (*-Y) d? .(2.30)

Defining the Fourier transforms V (F), A (), and 0 M,

-f ty '(2.31)

7•)-fR(T)e'd7 ' , (2.32)

and

) W (r) e A ,(2,33)

we find that (2.30) is equivalent W

M)• - (210)1 )x R (T') M(2.34)

The current density field 7 has the form

f') - •) Vt•) ; (2.35)

if we make the definitions

o,) - f I(W) e dk (2.36)

and

W" f •) M e W'r ark* (2.37)

we find that (2.35) is equivalent to

R W) -f V '-P) (b (J).dk" (2.38)

* a"
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An equivlent expression to (2,29) for PO) is

,,[ r . (2.39)

some work with this expression shows that

0--• (20-1 U' uJ) (2.40)

where

U . '-W',r df ,(2.41)

giving for (2.34)

M V (2.42)

where

7" X j) je M() (2,43)

-f WX IF) T.•-)•r d

If expresslot (2.41) is written In Cartesian coordinates, then use of symmetry about. the origin

reduces it to three sequential cosine transforms, which are given -in Erde' lyi et al,, 1954, v, I

(sec. 1.3, esq. 7, p. 11, sec. 1.13, eq. 43, p. 56, and sec. 1.4, eq. 1, p. 14); the result is

U(E w -4v (2.44)

The current density distribution ,J up to the first order is given by

0r)-aro(0)OV~o()+ J , (2.45)

where

A(Y) - r1C) VO00) + 00(z) VO1) ; (2,46)

the first term of (2.45) is unaffected if cr I is set uniformly equal to zero, whereas F'4 vanishes,

thereby identifying itself as the anomalous part of the distribution, The Fourier transform

CO(D) of the magnetic field resulting from JA O) is

e (k-) U ) GO (2.47)

4w. . . - ,, .,, , : ". ,, , . .. , ,. €
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IC LA Mg f (P× xE) (I:l(r-0 )bo(P) + £ro(r-'kl) 1(0)) dO• (2,48)

where

'I) fJ lo .) ' ,(2.549)
' • oIce) - f ZF m e'Ir dE (MO5)

oazd

.... •- f'Ol()e•, a(2,52) ,

'I

•.,

a,

K2F.
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3. Exlpnential decline of the lateral inean electrical conductivity with depth

Let us suppose that vo0(z) the unperturbed electrical conductivity distribution of the

ocean goes as

1 do,0(z) .
-X X ;i 0 (3.1)

where X Is a constant, living an exponential decline in ao with depth. Then (2.15) becomes

V0 + x - ,(3.2)

for which (2.24) is still a solution, and (2.16) and (2.17), become

V20 + A, T ... (3.3)

where

P100f-V ,I'V~o (3.4)

within the ocean and Is undefined elsewhere. In this special case, if 00 and o(r are provided,
then an analytical solution to (3,3) Is possible,

* ~Going to the Fourier transform domain, we define

(3.5)

and

pIC -f P( I a (3.6)

to avoid ambiguity in the Fourier transform of p I we set it to zero outsida of the ocean.

Making these substitutions into (33) gives

Q(r-) ¢bk) - Pjk) ,(3,7)

where

From (3.7) we have

(3.9)

.*I ~ .* .~** * .1. -~ * L
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whose inverse Fourier transform 4Ip o) ls a particular solution to equation (3.3). Equation

(3.3) with pi set uniformly equal to zero is solved by any term of the form e4ý'l for which k- is

such that Q(-)-O. If we write W' in the form

k (kx,k,,k) , (3.10)

then (3.8) becomes

- w ()-k 2 - kk - kj (3.11)

where

k- kx2 + k2  ; (3.12)

setting Q (') uniformly equal to zero gives for k

k- + . (3.13)

Accordingly, we have for the general, solution to equation (3.3)

I P - (?) (3.14)

+ f f A(k-,kA) exp(i(kxx+ky)-kA z) dkv dke

+ f f B(k,,ky) exp(i(kxx+kyy)-khz) dk. uký ,

where kA is the larger of the two roots (3.13) and kB is the smaller; the integral term in A is
downward-increasing, whereas the integral term in B is downward-decreasing.

If we suppose that X has the same value everywhere from the ocean fluor to the sur-
face, then the boundary conditions on any solution to (3.3) are that I.Vot-0 both M the ocean

bottom and the ocean surface, which is equivalent to saying that there is no flow of electrical
current through either bottom or surface, This approximation is usually valid because the con.

*. ductivity of the seafloor, while variable, is usually far smaller than that of the seawater above.

From (3.14) we have that

i VI() CO f f V(kx~ky,z) expji(k:x+.ky)} dk0 dkY , (3.15)
-- -rn•

V(kX,kyz) R (kx ,ky,z) - kA e-kA A(kX,k,,)- ke-A"NB(k,,k,) (3.16)

"M. ,
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where

R (k,k,,z) f k, 01,(Djp e"--" A.. (3.17)
-aU

The. boundary conditions at surface and bottom are seen to be, equivalent to

__ VO•,k,,•~~vs) -V(k•,,a 38

where zs and z5 ame the altitudes of the surface and the bottom respectively, These represent

two equations in A and B, which may be solved simultaneously 'for A and B in terms of R at

the two altitudes,

In.some cases it may prove convenient to minimize the maximum valu6 of tctl[ by

constructing ao from two different exponential curved joined together at some depth within the

* ocean. If this is done, then theji the conditions (3118) still apply, aid there are additional condi-

tdons at the interfacing depth, derived from the requirement that the electrical current density

distribution be continuous across the interface; provided that o'0 is continuous across the inter-

face, this is equivalent -to saying that V, I is continuous across the interface. We already have

in equation (3.15) an expression for the vertical component of the gradient; froun equation

(3.14) we have for the horizontal components

* Vyt ) - f 5 I(Is ,k ,0) H(k,,k ,,z) exp(I (k,.x+kyy)) dk,, dk, , (3.19)

-Ie) -f a ,3

.I H(k,k•,r) - S(kx,ky.z) + e-kAA (kx,k) + e-khB(k*,ky) , (3.20)

where

S (kxky z) f 5 G) eIk dI A . (3.21)
--us

" " Let the lower region be called region 1, and the upper regl( n be called region 2, with their

interface being at the altitude zi; bur object is to find 01 in the two regions by solving for A I

S.and BI In the lower region and A 2 and B2 in the upper region. For boundary conditions we

have

VI (k. ,ky ,zs) -0 ,(3.22)

VI(kx,k. ?,zd) V2(kx,k,41,)., (3.23)

iI,(kx,ky,zj) -f(kk,z,, ') , (3.24)
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and

Y2(kx,kyzs) - , (3.25)

giving one equation in A,1 and B , ghe equation in A2 and B2, and two equations in all four

parameters. Although the process is cumbersome, theso conditions are sufficient for the unique

simultaneous solutions for A 1, B1, A 2, and B2.

1%

__= ' "I )..

V.•%,

.: ,s=•..•..,,.•# q • <..••. ,' ' ' '•s• •, p• ).s•); • ',.' O•,,••.( ,,.'=•,•• •.'.,• ,•,,,... .. ,. ,• .
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4. Pract•iel use of the method of sectio•i 3

The basic approach used here will be to first compute the magnetic ,anomaly field asso-
ciated .with a unit point variation from the mean electrical conductivity distribution a-0, and then

use this as a Green's function.to get the field for an arbitrary variation distribution. Drawing
upon section 2.2, we have that if A*;. is the magnetic field associated with a variation distribu-

tion ok, then its Fourier transform Tv is given by

Cv k)VM . (4.1)

u(k"),- k (4.2).

L~v M - jF 9*v(k)(4.3)

where Cv' is the Fourier trans~form. of Jy, the anomalous electrical current density distribution

associated with the variation distribution;

"0)- f dk (4.4)

From equation (2.46), we have that

"rv (9) -V I W• + ,/V2(3e) (4.5)

where

fvvt0) -IM V0t0).) (4.6)

and

JfV-20) - 0ro00) V I (r) ,(4.7)

with the Oth and Ist order electric field potentials q6O and 0 as defined in section 2.1. We

assume that 0o is given by

0o(y) - Eo x ,(4.8)

so as to give a uniform electric field of EO Sc within the ocean in the absence of a variation dis-

tribution, and that the mean distribution co is given by

0OO(z) - W (Z) C0(ZS) eXp(x (zs-z)) ,(4.9)

0 , otherwise , (4.10)

' " '• • _ '_J[" "T •l' ' i •" .. . . . . •t• • "
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where X is a constant greater than or equal to zero, zS is the altitude of the surface of the

ocean, &nd z5 is the altitude of the ocean bottom. Assuming for the moment that

L.,)- 8cr-io) , (4.11)

where 8 Is the Dirac delta distribution, written as

A. A, fk f f .dk; excp(-ir" ) ,(4.12)

* ~(21r) 3  -

we immediately have for Xv,

-ex (4 i3).

and hence

L7,'('r) ( (x) I exp(-i o) .(4.14)

For CV2 we have that

KV 2 (&k ) - ~~ dy dexP&V rkX) (4.15)

x W(z)co(zs)exp(X(zs-z)) V101(y)

if 40( is the Fourier transform of Wl(), then this becomes

Kv ( -oo(:s)Cxp (-xts) f (kx ,ky ,k..) 0 (k-. ,ky k,k) (4.1'6)
2v

,X exp(i.(k'-k,-AX)zs) - exp(I(k,'-ki-iX)z 8 J, _

from which we have

.oo(z)exp(-,- zs) -
L:C2k (kx I) ý (kz-k )0j(,kk,k,°) (4.17)

[ exp(1(k,'.-k,-iX)zs) - exp(i(kr-kr•-x)zn) 1

xl •
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To determine 01, we refer to section 3. From equation (3.14) we have that

OIG) 0-1 p ) + A (kx,ky) 8(kZ-IkA) + B(k,,ky), (k5-ikg) , (4,18)

where

kA -a a+ ,(4.19)

. -a- ,(4.20)

(4.21)

and

+(4.22)

where

ki k2 c (4.23)

0 4() is given by

01k) pick) ""(4.24)

where

0 M'/ ) -O+ikA ) (4 -IkB ) (4.25)

and PI(k-) is the Fourier transfoirn 0fplC) as given by equation (3.4), which in this case is

p___WWIIlk) I (4.26)
-oao(zs)eXp( s-Z)l (

accordingly, we have, assuming (4.11) for oa,

Eoexp ( kzs .Jt ' W(z 0) exp (-Xzo) exp (-ik"*0) (4,27)P•(•)- i(2ir)3crc(zs)

and

Eoex'p j (:s) •.•k W(zo) exp (-%zo) ( (4.28)
R eferenc (2tr)3 ycn(zs) A (k 1-Ika )

S~Reference to the boundary conditions (3.18) shows that A (kx., k,) and B (kx ,ky) are related to
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01 through the matrix expression

AB(k,,ky) J R (kxk,•z.) ' (4.29)

where

[ ke (-kpz,) -kjexp(-kuzs) (4.30)
D A -kaexp(-kA4 ) kAUxp(-kAzs)

with

D) -2 ki eV'(-Azs) ev (ad) sink (8d) ',(4.31)

d- zs - za (4.32)

and

-inA (kk,!yz) 1- 0 i• M1• w.(U: dk, 0 , (4.33)

If we make the separation

"2') - LP (r) + ,i ':,I) + 4 00) (4.34)

where the terms on the right side are, respectively, the terms on the right side of equation

(4.18) substituted individually into expression (4.17), we see that

IoA(zs)exp (-Xs) k, - IkA (435).•A •)"! • -. • x •)k, + 1ka 4.5

x [exp(-H(k2+iko)zs) - exp(-1(k+ik,)za)] A (kx,ky,)

and

k r°(zs)eXS (-Xzs) rkX ) k, - 1k& (4.36)
21r k. + IkA

x [exp{-i(k•+ikA)zS) - exp{-I (k,+ikA)zB}] B (k- ,ky)

The remaining integrals are easily evaluated by contour integration, giving

.)- F" (Ikx 0) exp1-I(k,,xo+kyOo)) W(zo) [ (k, +ikg)(k,+" k 4)(2v)3~~ ~ (k 4.3 k,+ k )

0
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(kA - xi IC)XP1k + Ikg)zs)

- 2,6x(-~i~k,+ k) ZB eq (-kz'o)

+ (~ ik)cp(-lkg + IkA)z

EO (k,+-1kA) ( )
LA k2 r 2#(,+k. [exp(-I%-Nk,+k)zs) - exp{-i1k + lkp)zg4I38)

x exp(-1 (kxxo+kyo)) W(.?O) YA (k, ,ky zg)

and

Ektr-OFx ) (4.39)
3 2w. 2p (k, +ikA)

x [exp(-i (k.+1kA)ZS) - exp(-i (k. + 1k4)zp)1

x exp(-i (kxxo+kyyo)) W(zg) Yj (k.i ,kyz~o)

where

jA Y(kx ,k,,o) A kgxp (-kAz:S)&Vp(kB zo) 1440
Yj (kx ky z)i I kgexp(-kB:S)erp(-kAZ0 ) 4(.0

We ow nterat th teMISof derived above aganst a- 10*) over all i' within the

3 ocean to set an expression for Gv for arbitrary 0r1. If we define the transforms

lJr~ fdy f dz ci1  W (z)erp (-ik'.r) ,(4.41)

TA kx $ky) - i-frxd ti(7,01) W(r) (4.42)(2,r)3

x exp{-l(k,,x+kyy)) exp (-kg:

and

NV.
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* x exp{-1 (k~x+kyy)) exp(-koz) I

we find that -the equivalents of (4.14), (4.37), (4.38), and (4.39) are

L1(r- I(E W) 3 kh (4.44)

4(~)um~o k.A(kx2 I (k+U)( + 1k1)ZS
2p (ki+ 1kBTo(kx,ky)

F+ (,-1ke) exp(- I(k, + IkA ):,) TA ,,,,ky
+ (~4IkA)

2p(k-U+CA)

x [exp{-i(k~+Ikm)z3) - exp(-I (k, + Ik,)zg)] ZA (kX,ky)

and

Ir. No (r 1)Z8 (k + IkA)(.7

X (eXOA-i(k+A,+A,)ZS) - xp{--I(k. + IkA)ze0)J Z1 (k~,k,,)

where

[ZA (Ar,,ky) I kA exp(-kAZS) T, (k.,k,) 1(4.48)
ZO (A-x,'ky) kg exp (- ka z,) TA (kx k,)

Note that TF Is just an inverse Fourier transform.

U
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5. Two different methods for a general solution

5.1 The solution in rect ilinear coordina t es
This method is based on the separation of variables in a rectilinear coordinate system,

and its The final result is presented in the

form of a partial Fourier transform, and is somewhat eWier tinto a full Fourier

transform than into the untransformed equivalent; for this reason, this method is recom-
mended over the other if one wishes to calculate the magnetic effects associated with a front, as

it interfaces more cleanly into the mathematics of section 2.2 than does the other method.

We start with the homogeneous equation for any order,
V\ • )W+f(z) + , (f.1)

8:

and assume that € separates as

•0•)- YW) H(xy,) .(5 2)

Some work then gives the equations

d2_ + •_ V ) -O 0 (.3)
dz

and

.VkH0xy)+k 2JH(xy)-O (,.4)

where k2 and V(z) are an eigenvalue and the associated eigenfunction of equation (5.3) under
the boundary conditions

& ,y- O~r) no . (5.5)

derived from the criteria that for ail orders I.VO must be zero at the ocean bottom at ,B and
the ocean surface at zs. For convenience of notation we label the nth cigenvalue and its associ-

ated functions k,2, VY (z), and H, (x jl). If orthogonality can be demonstrated for the'V, then
they may be used in the construction of the final solution; that the other requirement of com-

pleteness is satisfied is suggested by the observation that equation (5.1) under' the boundary

conditions (5.5) -should have an infinite number of discrete solutions, which should form a

complete set if they are orthogonal to each other.
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To demonstrate the mutual orthogonality of the V, (z), we first note that, according to

the definition of f(z) in section 2.1,

f -§) d(z) . (5.6)

Letting a prime denote differentiation with respect to z, we observe that

S(V.o'ovy)'- Vm'(?oVu'+fVMOoVi'+ V,•moV." (5.7)

- V,'7o oV'+ VMGoO (V,"+fV"')

Vm - v.''VR + k1 vmo'or0Vj

by (5.3); given this, we then have that

S(VxooVx- VooV.= (kl- Q) VoV, (5.8)

and hence

(k,1 --kc,) o0o(z)V.(z)V.(z) 1W -(h o(z) (V,"(z)V,'(z) - Vm'(U),(ZI I: - 0 (5.9)

by (5.5). Therefore, we have that

-cro(Z)V. (z)Vm W z) d,, -W,,ln , (5.10)

where 8. is in this case the Kronecker delta, and

I" Z -Z ) .5.11)

* We now turn to the nonhomogeneous equation,

8:

If we dofine the partial Fourier transforms

"-'j 0•- dk,, dky F (k,,,kyz) exp(I (kxx+ky,.)) (5.13)

ill

. -.
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and

p(O- f dkx dk, P(k.,ky) exp(i(kx+kyy) , (5.14)

then equation (5.12) is transformed into

alp 4- O)M kF kex +,T ) F 2.- -P , (5.15)

where

k2 - kX + k,2  (5,16)

equation (5.15) may be solved through the construction and use of a Green's function 0 such
that

F(kx ,Az) - G(z,',k) P(kx,k •z') z' (5.17)

The appropriate equation for G is

82  8:G 4,z',k) + f t G (7(z.z',k) -k2 G Uz',k)-(- z' a (5,18)

following a Iite of reasoning similar to that used to demonstrate the mutual orthogonality of
the Y., we observe that

8..(Vx(FoG'- Vx,'ooC-ý V,( W)cro(:) G(zxz',k) W(k2- .2) ' (5,19)

$ 8:

- V(z) ro(z) 8(U-')

where a prime again denotes differentiation with respect to z, and hence

0 - 0(k2 - kn2) o(z)V(z)G(,z',k)dZ+To(r')V, (z') (5.20)

which has the solution

Gk g- (Z) cro(z')Vn(z') + C(zz',k) , (5.21)O~z',)-(k,2 k2) I.

where C is any function orthogonal to V, (W). On the basis of symmetry we guess that

* -
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G (zz',k) -- WVz ) V ) (5.22)

01-0 (k,, kc2) In

and test this by substituting it back into equation (5.18) to get

S. (5.23)
M-0 I'

- this is In fact the expression that one gets by using (5.10) to do a series expansion of a (z-z')

In the V. (z), indicating that (5.22) Is the correct expression for G.

Accordingly, we have from (5,17) that

VF• 2).. Q,(k,,k,) (5.24)F O•,.,, . A = 0 (kol - k ),

where

O , ( , ,k y - o • ) , ( ) ," ( , .k • ) z .( 5 .2 5 )
*5

If • (• Is the full Fourier transform of'• 0C), then we have that

O()- f F(k,,kyz) e" ,(5.26)

the evaluation of which amounts to replacing the V. (z) in (5.24) with their Fourier transforms.
- we calculate # (C) from (5.24) by a two-dimensional Inverse Fourier transform, of F, we get

K=, (x,) .(5.27)

KA.xOh) - f L' f J ' 'o'o(z') V,. ')4 x.•'x~y'-y) pCr'y',z') , (5.28)

~ £ dk J' d exp(I(k~x+k~yI(.9L', 0€Y)- f_ dk, f dk, 1,,y)) k (5.29)
L1x)-(2,r)2 _. _. Y J 2-c,2_ Y

- M(k.x,k~y)

where

M (X ,Y)- f du f dv I- -V(2,r) 2  U, -u2
-V

2  .0

MVN#
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which reduces, with transfomation to polar coordinates followed by integration over all angles,
to

S(xy) - f• l-k (kp) Ak ,(5,31)

where

p +(5.32)

Making use or the identities

HP)(-Z) - (-1)" H0" 2)(R ) (5.33)

HP) (-,Z) -- (1)' R, '):) (5.34)

where

H1(4) (z- J () + I N,,(x) (5.35)

42)(0)•.- in (Z) - I IV, (:) ,(5.36)

we find that

k FL H42)(kp)dkA u2f9 k JNig pdk S.71. k 1- k2

giving from equation (5.31)

M(XY)- k• _ f.-_H 2) (kp)dk , (5.38)

this may be evaluated by contour integration, closing the contour In the lower half plane and

excluding the pole at the origin as a nonphysical mathematical artifact, to give

M(xy) - -1/4 No(p) , (5.39)

The calculation of 000 from F is somewhat more tedious than the calculation of 0(r),

involving two-dimensional convolution Integrals as opposed to one-dimensional Fourier

transforms.

- I . 4 I
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5.2 The solution in cylindrical coordinates

This method is based on separation of variables in a cylindrical coordinate system, and

makes heavy use of Bessel transforms. For the final result, O,(Y) is presented, in cylindrical
coordinates, as a series of Bessel functions, of the second kind. Disadvantages of this method

are that it-is practically suited only for electrical conductivity perturbation distributions localized

about the origin, since an extended distribution requires more terms in the series expansion

than does a localized one, that large numbers of terms are necessary to adequately describe the

electric field close to the origin, since successively higher order terms in the expansion for 4,

tend to be progressively more concerned with the field in the neighborhood of the origin and

less with the field at great distances, and that using this method to calculate magnetic effects is

more involved than using the method discussed In -the last section; balanced against this is the

availability of numerically swift algorithms for computing Bessel transforms (Anderson, 1979;

Chave, 1983), Accordingly, this method is at its best in computing the electric field associated

with a localized electrical conductivity, variation, particularly the field at large distances from this

variation,

We start by assuming the separation

(0 oz) - V(z) H(p,O) , (5.40)

which, when substituted into the homogeneous equation (5. 1) yields for V and H

d2V(z) dV(z) k2 ;(z)- 0 (5.41)

and

VhH(p,o) + k2 H(p,O) 0 ; (5.42)

the boundary conditions on 4,, that 2.V4-0 at the ocean bottom at za and the ocean surface at

zs, give that

" "Vqz) dVz) 0 (5,43)

serving to restrict solutions of (5.41) to discrete elgenvalues k,,2 and associated eigenvalues

VU(z). We observe that (5.41) and (5,43) are identical in form to (5.3) and (5.5) respectively

in the previous section, Indicating that the eigenfunction orthogonality arguments made there

can be extended to the work of this section,

- .. 4. .
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We then define the transforms

( (0 -A fk dk A Fm (z,k) elm- J, (kp) (5.44)
M-0 0

and

p~pO.)- mofo dk APm (U,k) elm' J, (kp) (,5

and their inverse transforms

F. 2rk) -2m fpdp do d , (p,6,z) e-1m" J. (kp) (5,46)

and

e Pm(zk)i- p f dpo de p(.p,Oz) e'"O Jm(kp) (S.47)

where 0 and p are as in equation (5.12). Substituting expressions (5.44) and (5.45) into equa-

"tion (5.12) and using the identity

Vh e"".4 (kp) - - k2 elJ (kp) (5.48)

gives the equation

SFm (Z,k) +f(z) a F, (z,k) - k2 Fm ( ,k) -Pm (Z,k) (5,49)

which is seen to have the same form as equation (5.15) in the previous section.

Because of the observed similarities between the work of this section and that of sec-

tion 4.1, we can immediately write

Fm(z,k)- G(z~z',k) P. (z',k dz') , (5,50)

where G is as given by equation (5.22), and hence

F 1, V (z) K(5,(k)

where

Knm(k) W rO(z) VA (z)P,, (z,k) dz (5,52)1K#
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Substituting (5.51) back into the transform (5.44) then gives

*(pO) V" V(Z) e m L,,.(p) (,3
"4 ~m.,O n.-O 4n

where

( Kdk ,, K (k)
L. (o) f k A k 2 -' J, (kp) (5.54)

We can use the identities (5.33) through (5.36) in section 4.1 together with the observation

that

K.0 (-k) 1 -)" Kw Wk (5.55)

, to demonstrate that

L(tp) - ,•_h Kf lk (k 2 H,, 2)(kp) , (5.56)

which may be evaluated by contour integration, closing the contour in the lower half plane and

detouring the section along the real axis below the origin, to get

SLý, (p,) - - -r K," (k,) N, (kp) .(5.57)

Note that each of the K,. need be evaluated for only a single value of k in these calculations.

1.A'4
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